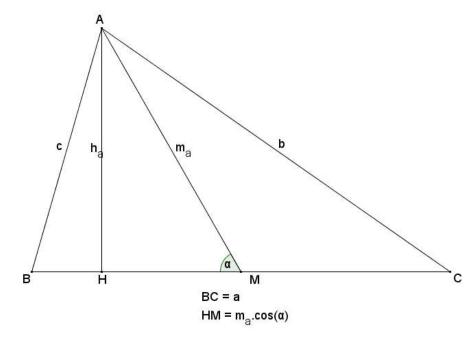
Problema n° 821

Construir el triángulo cuyos datos son h_a , m_a , b+c. Santamaría, J. (2017):Comunicación personal.

Solution proposée par Philippe Fondanaiche



La hauteur $AH = h_a$ et la médiane $AM = m_a$ issues de A étant connues, on en déduit le côté HM du triangle rectangle HAM ainsi que l'angle α de la médiane AM avec le côté

BC. HM =
$$\sqrt{m_a^2 - h_a^2}$$
 et $\sin(\alpha) = h_a/m_a$.

On connaît par ailleurs la grandeur d = b + c et on suppose sans perte de généralité b > c.

On a les deux égalités:
$$b^2 = m_a^2 + \frac{a^2}{4} + a.m_a.cos(\alpha)$$
 et $c^2 = m_a^2 + \frac{a^2}{4} - a.m_a.cos(\alpha)$.

On en déduit:

$$\sqrt{m_a^2 + \frac{a^2}{4} + a.m_a.\cos(\alpha)} = d - \sqrt{m_a^2 + \frac{a^2}{4} - a.m_a.\cos(\alpha)}$$

Par éliminations successives des deux radicaux, on obtient la relation:

$$a = d\sqrt{\frac{d^2 - 4m_a^2}{d^2 - 4m_a^2 \cos^2(\alpha)}} = d\sqrt{\frac{d^2 - 4m_a^2}{d^2 - 4HM^2}}$$

qui permet d'exprimer le côté BC=a en fonction des trois grandeurs h_a , m_a et d=b+c. a est toujours défini quand d>2 m_a .

Comme l'expression donnant a contient une racine carrée et des formes quadratiques, a est constructible à la règle et au compas.