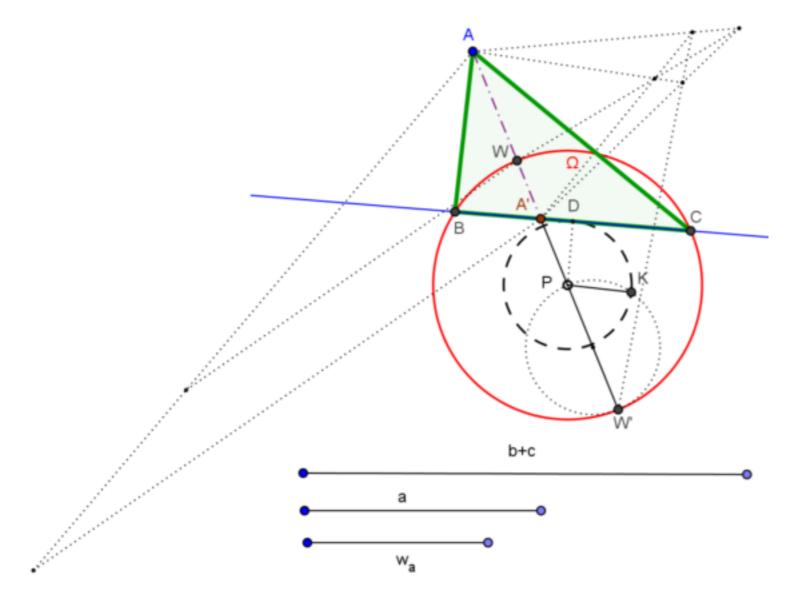
Quincena del 1 al 16 de Mayo de 2017.

Propuesto por Julián Santamaría Tobar.

Problema 826.- Construir el triángulo cuyos datos son w_a , a, b+c, siendo w_a la bisectriz interna.

Petersen, J. (1901): Méthodes et théories pour la résolution des problémes de constructions géomètriques. Gauthier - Villars (116), p. 21

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Sea AA' la bisectriz interior de A. Según el teorema de la bisectriz los segmentos BA' y A'C determinados en el lado BC por la bisectriz de A miden $BA' = \frac{ac}{b+c}$ y $A'C = \frac{ab}{b+c'}$ respectivamente. Tenemos, a partir de aquí, $\frac{BA}{BA'} = \frac{b+c}{a} = \frac{CA}{CA'}$.

Por tanto los vértices B y C son tales que la razón de sus distancias a los extremos de la bisectriz es igual a $\frac{b+c}{a}$ que es un dato del problema. El conjunto de puntos del plano que tiene esa propiedad es una circunferencia, la circunferencia de Apolonio Ω , del segmento AA' de razón $k=\frac{b+c}{a}$. Veamos cómo construir esta circunferencia:

Por el teorema de Thales encuentro un punto W sobre AA' tal que $\frac{WA}{WA'} = \frac{b+c}{a}$. Después construyo W', cuarto armónico de la terna (AA'W). Los puntos W y W' dividen al segmento AA' según esa razón. La circunferencia Ω que buscamos es la de diámetro WW' y centro P. Ahora hay que fijar la posición de B y C en ella.

La distancia de P al segmento BC en posición, es la longitud del cateto que completa el triángulo de hipotenusa el radio de Ω y el segmento $\frac{a}{2}$ como segundo cateto. Una vez construido, segmento PK, trazo con él una circunferencia concéntrica con Ω : Las tangentes desde A' a esta última, definen los vértice B y C que completan la construcción.