Problema 828.-

Supongamos que M y N son los puntos de tangencia de la circunferencia inscrita con los lados BC y BA del triángulo ABC. Sea K el punto de intersección de la bisectriz del ángulo A con la recta MN. Demostrar que el ángulo AKC es recto.

Referencia desconocida.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Una vez realizada la construcción solicitada, observamos los siguientes hechos de interés:

H1.- Los puntos BMIN son concíclicos ya que $\angle BMI = \angle BNI = \frac{\pi}{2}$.

Por tanto, $\angle MNI = \angle MBI = \frac{1}{2} \angle B$.

H2.- En el triángulo ANK, tenemos el valor de dos de sus ángulos,
$$\angle NAK = \frac{1}{2} \angle A$$
; $\angle ANK = \frac{\pi}{2} + \frac{1}{2} \angle B \rightarrow \angle NKA = \frac{1}{2} \angle C$

H3.- Los puntos CMIP son concíclicos ya que $\angle CPI = \angle CMI = \frac{\pi}{2}$.

Como quiera que $\not\preceq MKI = \not\preceq NKA = \frac{1}{2} \not\preceq \mathcal{C} \rightarrow K$ pertenece a la circunferencia circunscrita al cuadrilátero CMIP.

En definitiva, $\angle IKC + \angle IPC = \pi \rightarrow \angle IKC = \frac{\pi}{2} \rightarrow \angle AKC = \angle IKC = \frac{\pi}{2}$, cqd

