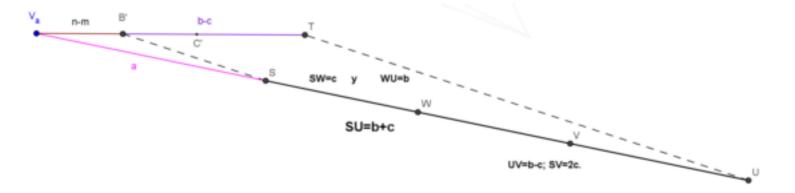
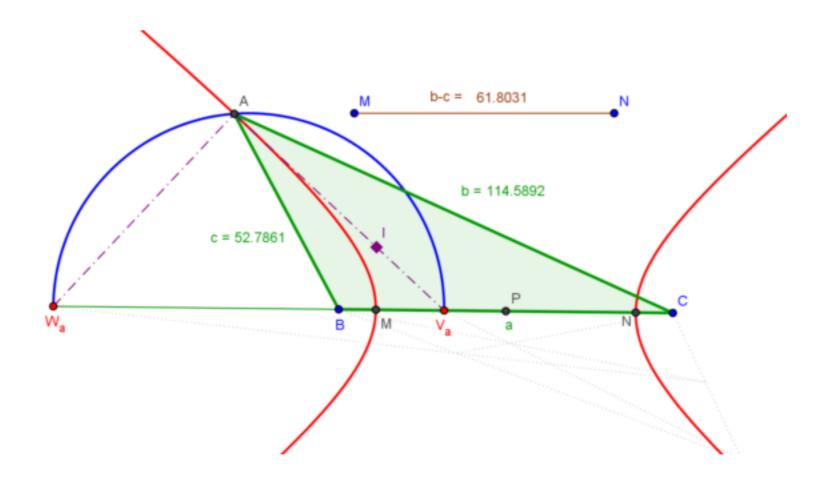
Quincena del 16 al 31 de Mayo de 2017.


Propuesto por Julián Santamaría Tobar.

Problema 830.- Construir un triángulo dados en posición los puntos B, C, y V_a (pie de la bisectriz interna de A), y conocido b-c

Santamaría J. (2017): Comunicación personal.


Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.

Primera construcción

Supongamos b>c. Sean m el segmento BV_a y n el V_aC . Según el teorema de la bisectriz las longitudes de estos segmentos $\operatorname{son} \frac{ac}{b+c}$ y $\frac{ab}{b+c}$ respectivamente. Para el segmento diferencia se tendrá $n-m=\frac{a(b-c)}{b+c}$ que se puede poner $\operatorname{como} \frac{n-m}{a}=\frac{b-c}{b+c}$. El valor de a es un dato y también m,n y b-c por tanto, podemos construir el segmento b+c. Éste junto $\operatorname{con} b-c$ nos permite $\operatorname{construir} \log \operatorname{lados} b$ y c y concluir la construcción.

Segunda construcción

A partir de V_a construyo el punto W_a que hace que la cuaterna $(BCV_a W_a)$ sea armónica y que es el extremo de la bisectriz exterior.

La circunferencia de diámetro V_a W_a es la que contiene el vértice A del triángulo. Por otra parte, la hipérbola de focos B y C y eje real b-c, también contiene a A. La intersección de ambas figuras nos da la solución del problema.