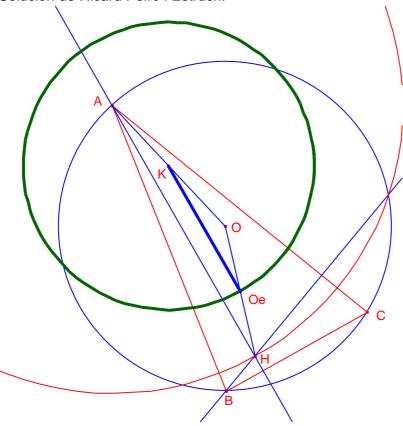
Problema 831

Un triángulo tiene vértice A fijo en una circunferencia y el lado \overline{BC} opuesto de longitud constante, es una cuerda variable de la circunferencia.

Determina el lugar geométrico del centro de la circunferencia de los nueve puntos de los triángulos.

Ortega y Sala, M. (1940): <u>Geometría.</u> Tomo II (Complementos y ejercicios) Obra elegida para el ingreso en las Academias Militares. 17 Edición.

Solución de Ricard Peiró i Estruch:



El centro O_e de la circunferencia de los nueve puntos del triángulo ABC es igual al punto medio del segmento formado por el circuncentro O y el ortocentro H. O es un punto fijo.

A es un punto fijo.

Sea K el punto medio del segmento \overline{AO} . K es un punto fijo. El ángulo A es un ángulo constante.

Veamos que el segmento \overline{AH} es constante.

$$\angle ABH = 90^{\circ} - A$$
, $\angle BAH = 90 - B$. Entonces, $\angle BHA = 180 - C$.

Aplicado el teorema de los senos al triángulo ABH:

$$\frac{\overline{AH}}{\cos A} = \frac{c}{\sin C}$$

Aplicando el teorema de los senos al triángulo ABH:

$$\frac{a}{\sin A} = \frac{c}{\sin C}.$$

Entonces, $\overline{AH} = a \frac{\cos A}{\sin A}$, entonces, \overline{AH} es constante. Por tanto, el lugar geométrico de

H es la circunferencia de centro A y radio $a \frac{\cos A}{\sin A}$.

 $\overline{\text{KO}_{\text{e}}}\,$ es la paralela media del triángulo $\,\stackrel{\Delta}{\text{AHO}}\,.$

Entonces,
$$\overline{KO_e} = \frac{1}{2}\overline{AH} = \frac{1}{2}a\frac{\cos A}{\sin A}$$
. K fijo.

Entonces, O_e recorre la circunferencia de centro K y radio $\frac{1}{2} \frac{\cos A}{\sin A}$ a.