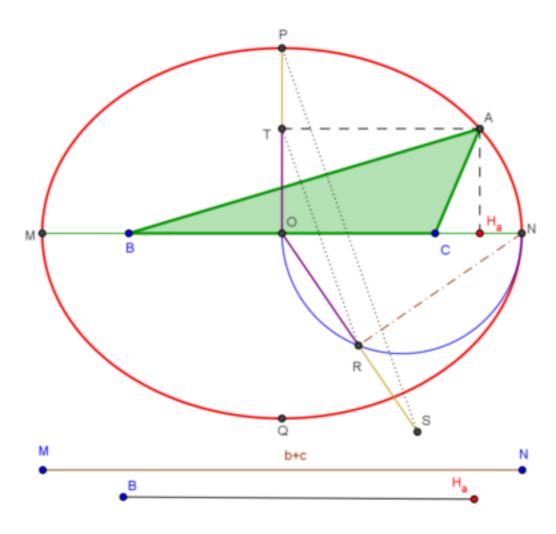
Quincena del 1 al 15 de Junio de 2017.

Propuesto por Julián Santamaría Tobar.

Problema 833.-Construir un triángulo dados en posición los puntos B, C, y H_a (pie de la altura de A), y conocido b+c.

Santamaría J. (2017): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Supongamos unos ejes de coordenadas centrados en el punto medio O de BC, con este segmento como soporte del eje de abscisas.

Sea

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} = 1$$

la ecuación de la elipse de focos B y C y eje focal b+c, donde $\alpha=\frac{b+c}{2}=ON$, $\gamma=\frac{BC}{2}=\frac{a}{2}$ y β tal que $\alpha^2=\beta^2+\gamma^2$.

En ella está el punto A. También está en la perpendicular a BC por H_a . La intersección de ambas figuras nos da la solución del problema.

Si $OH_a=h$, de la ecuación de la elipse obtenemos $\frac{y}{\beta}=\frac{\sqrt{\alpha^2-h^2}}{\alpha}$. De esa proporción sólo se desconoce la ordenada de A, o sea,

la $y=\mathit{OT}$. Con el teorema de Thales podemos construirla, como se muestra en la figura. Los segmentos que allí se muestran

son
$$OH_a = NR$$
, $OS = \alpha$, $OR = \sqrt{\alpha^2 - h^2}$.