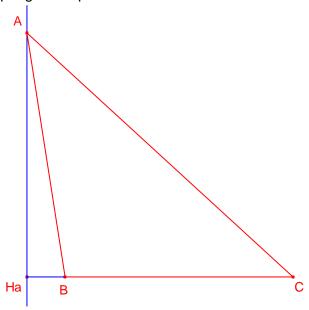
Problema 834

Construirun triángulo dados en posición B, C y H_a (pie de la altura de A) y conocido b-c.

Propuesto por Julián Santamaría Tobar.

Solución Ricard Peiró i Estruch:

Supongamos que B es obtuso.



Sea
$$d = b + c$$
, $m = \overline{BH_a} \le \frac{a}{2}$.

$$\overline{CH_a} = a + m$$
.

Aplicando el teorema de Pitágoras a los triángulos rectángulos $\overrightarrow{AH_aB}$, $\overrightarrow{AH_aC}$:

$$\overline{AH_a}^{\,2} = c^2 - m^2 \, , \,\, \overline{AH_a}^{\,2} = b^2 - (a+m)^2 \, . \label{eq:alpha}$$

Igualando les expresiones:

$$b^2 - c^2 = a(2m + a)$$
.

$$(c+b)(c-b) = a(2m+a)$$
:

$$\begin{cases} c-b = \frac{a(2m+a)}{d} \\ b+c = d \end{cases}. \text{ Sumando las dos expresiones:}$$

$$2b = \frac{a(2m+a)}{d} + d.$$

Sea
$$x = \frac{a(2m+a)}{d}$$
.

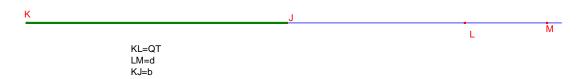
$$\frac{x}{a} = \frac{2m + a}{d} .$$

Pasos de la construcción:

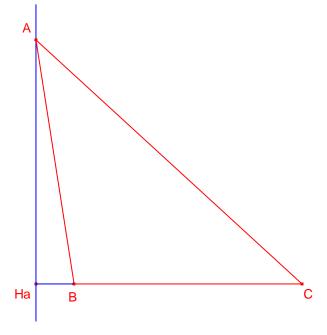
a) Construimos x como cuarto proporcional:



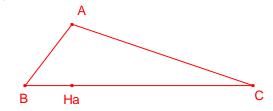
- b) Construimos $\overline{KM} = x + d$
- c) Construimos $b = \frac{\overline{KM}}{2}$



d) Dibujamos el triángulo $\stackrel{\vartriangle}{\mathsf{ABC}}$



Supongamos que B es agudo $B \ge C$



Sea
$$d = b + c$$
, $m = \overline{BH_a} \le \frac{a}{2}$.

$$\overline{CH_a} = a - m$$
.

Aplicando el teorema de Pitágoras a los triángulos rectángulos $\overrightarrow{AH_aB}$, $\overrightarrow{AH_aC}$:

С

$$\overline{AH_a}^2 = c^2 - m^2 \, , \, \, \overline{AH_a}^2 = b^2 - (a - m)^2 \, . \label{eq:adaptive}$$

Igualando las expresiones:

$$b^2 - c^2 = a(a - 2m)$$
.

$$(c+b)(c-b) = a(a-2m)$$
:

$$\begin{cases} c-b = \frac{a(a-2m)}{d} \\ b+c = d \end{cases}$$
. Sumando las dos expresiones:

$$2b = \frac{a(a-2m)}{d} + d.$$

Sea
$$x = \frac{a(a-2m)}{d}$$
.

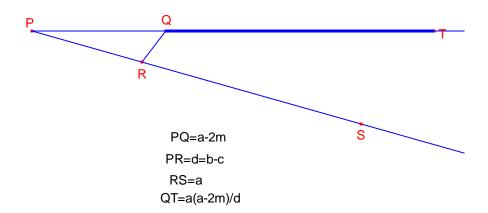
$$\frac{x}{a} = \frac{a-2m}{d}$$
.

Pasos de la construcción:

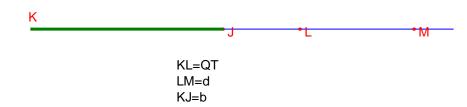
a) Construimos x como cuarto proporcional:

d=b-c

В На



- b) Construimos $\overline{KM} = x + d$
- c) Construimos b = $\frac{\overline{KM}}{2}$



d) Dibujamos el triángulo $\stackrel{\vartriangle}{\mathsf{ABC}}$

