Problema 836

Sobre los lados \overline{CA} y \overline{CB} d'un triángulo rectángulo isósceles \overline{ABC} se toman los puntos D y E tales que $\overline{CD} = \overline{CE}$. Las perpendiculares desde \overline{D} y \overline{C} a \overline{AE} intersectan la hipotenusa \overline{AB} en K y L, respectivamente. Demostrar que $\overline{KL} = \overline{LB}$.

- a) Determinar D tal que $\overline{CD} = \overline{CE} = \overline{KL} = \overline{LB}$.
- b) Determinar D tal que $\overline{AK} = \overline{KL} = \overline{LB}$.

Solución:

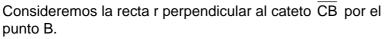
Sea T la intersección de $\overline{\text{CL}}\ \text{y}\ \overline{\text{DE}}\ .$

Les rectas CL y DK son paralelas.

AB, DE son paralelos.

Entonces, DKLT es un paralelogramo. Entonces:

 $\overline{\mathsf{LK}} = \overline{\mathsf{DT}}$.



La recta r y la recta CL es cortan en el punto P.

$$\angle CAE = \angle BCP$$
, $\angle ECA = \angle PBC = 90^{\circ}$, $\overline{CA} = \overline{CB}$, entonces:

Los triángulos rectángulos ACE, CBP son iguales.

Entonces, $\overline{CE} = \overline{BP}$.

$$\angle$$
CDT = \angle PBL = 45°, \angle TCD = \angle LPB. Entonces:

Los triángulos \overrightarrow{CDT} , \overrightarrow{PBL} son iguales.

Entonces, $\overline{DT} = \overline{LB}$.

Por tanto, KL = LB.

Si
$$\overline{CE} = \overline{CD} = \overline{LB} = \overline{KL}$$
, entonces,

 $\overline{CA} = \overline{LA}$, entonces, el triángulo \overrightarrow{CAL} es isósceles.

Por tanto, AE es bisectriz del ángulo A.

Entonces, \overline{BD} es bisectriz del ángulo B.

 $\overline{CD} = \overline{AD}$. Entonces, D es el punto medio del cateto \overline{CA} .

