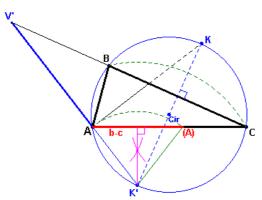
Problema 842

Construir el triángulo cuyos datos son el valor del ángulo A, la longitud de la bisectriz exterior wa, y (b-c)

Resuelto por JULIÁN SANTAMARÍA TOBAR profesor de Dibujo del IES La Serna de Fuenlabrada

El problema se va a resolver por dos procedimientos, el primero se aplica un arco capaz y el segundo se obtienen parejas de datos equivalentes a los lados b y c. En ambos casos hay que hallar previamente el segmento AK' comprendido desde el vértice A hasta el punto K' de intersección de la bisectriz exterior w'a con la circunferencia circunscrita.

Intersección K' de la bisectriz exterior w'a con la circunferencia circunscrita

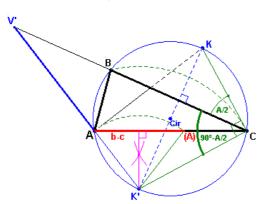


En el problema resuelto, el dato b-c se va a obtener girando el lado AB hasta alinearlo con el lado AC (girando el vértice B hasta hacerlo coincidir con el vértice C).

El centro de giro, cuando una recta se transforma en otra está en la bisectriz y cuando el punto B se transforma en el C, el centro está en la mediatriz de BC, o sea, el centro de giro es el punto K' de intersección de la bisectriz exterior w'a con la mediatriz de BC, pero este punto también pertenece a la circunferencia circunscrita.

Se conoce la posición del ángulo A, su bisectriz exterior w'a, y el segmento A(A) que mide b-c. El punto K' está en la mediatriz de A(A) porque es centro del giro que relaciona el punto A con su transformado (A).

Primer método, resolución mediante un arco capaz de 90-A/2 del segmento V'K'



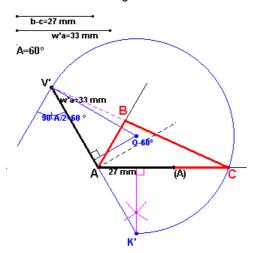
Deducción del ángulo V'CK'

BAK = A/2 = BCK por ser inscritos y tener en común la cuerda BK.

KCK' = 90 por estar inscrito en una semicircunferencia.

$$KCK' - BCK = V'CK' = 90 - A/2$$

Resolución del ejercicio

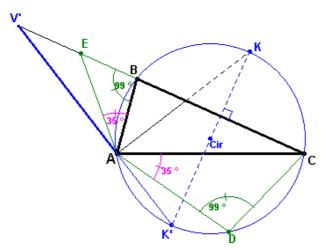


Se ha considerado que el ángulo A es 60°.

Se dibuja el ángulo A con su bisectriz exterior w'a y el segmento A(A) que mide b-c. El punto K' está en el punto de corte de la mediatriz de A(A) con la recta base de la bisectriz exterior w'a.

El arco capaz de 90-A/2, del segmento V'K' corta la recta base del lado b en el vértice C. Al unir C con el pie V' de la bisectriz exterior w'a se obtiene el vértice B.

Segundo método, resolución basado en parejas de datos equivalentes a los lados b y c



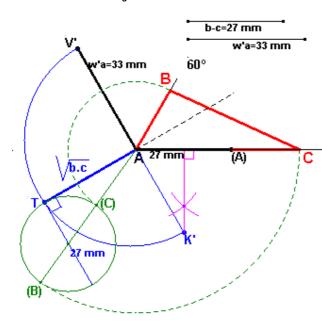
En el triángulo resuelto, se hacen dos segmentos cualesquiera que forman el mismo ángulo con los lados b y c, (isogonales), y se forman los triángulos ACD y AEB. Como los ángulos ADC y ABE son iguales porque el ángulo ABC es suplementario de estos dos ángulos, los triángulos son semejantes y se pueden relacionar los lados del modo siguiente:

 $AB/AD = AE/AC \Rightarrow b \cdot c = AD \cdot AE$ Si valor de los ángulos CAD y EAB fueran 90°-A/2 se cumple:

 $b \cdot c = AV' \cdot AK'$

Como AV' y AK' se conocen, se puede obtener el producto b.c Las parejas de datos (b.c) y (b+c) son equivalentes a la pareja b y c.

Resolución del ejercicio



Como en el anterior método, se dibuja el ángulo A con su bisectriz w'a y el segmento A(A) que mide b-c. El punto K' está en el punto de corte de la mediatriz de A(A) con la recta base de la bisectriz exterior w'a.

Tomando los segmentos AV' y AK', se aplica el teorema de la altura para hallar su media proporcional AT, que corresponde con el lado de un cuadrado cuya superficie es b.c

Con el producto b.c y el dato b-c, aplicando potencia, se hallan los valores de b y c

Se reduce el problema a resolver un triángulo dados los tres lados.