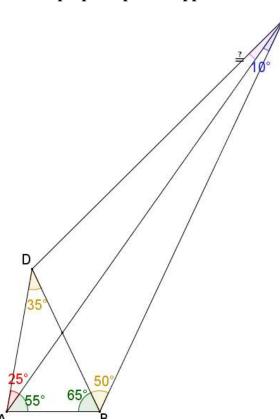
Problema n°846

Propuesto por Stan Fulger.

Sea un triángulo ACD. Tomemos un punto B exterior al mismo. Tenemos que:∠ACB=10°,∠BAC=55°,∠CBD=50°,∠CAD=25°. Hallar ∠ACD Fulger, S. (2017): Comunicación personal.

Solution proposée par Philippe Fondanaiche



On désigne par α l'angle \angle ACD qu'il s'agit de déterminer.

Réponse : $\alpha = 10^{\circ}$

A partir des angles \angle ACB = 10°, \angle BAC = 55°, \angle CBD = 50° et \angle CAD = 25°, on déduit l'angle \angle ABC = 180° – \angle BAC – \angle ACB = 115°. D'où \angle ABD = 115° – \angle CAD = 65°. Par ailleurs on a \angle BAD = \angle BAC + \angle CAD = 80°

La loi des sinus dans le triangle ABC donne la relation AD/BD = $\sin(65^{\circ}) / \sin(80^{\circ})$.

Cette même loi dans le triangle CAD donne la relation CD/AD = $\sin(25^{\circ})/\sin(\alpha)$ et dans le triangle CBD la relation CD/BD = $\sin(50^{\circ})/\sin(\alpha + 10^{\circ})$.

Il en résulte que CD = AD. $\sin(25^{\circ})/\sin(\alpha)$ = BD. $\sin(50^{\circ})/\sin(\alpha + 10^{\circ})$.

D'où l'équation $\sin(25^\circ).\sin(65^\circ).\sin(\alpha + 10^\circ) = \sin(50^\circ).\sin(80^\circ).\sin(\alpha)$

Or $\sin(25^\circ) \cdot \sin(65^\circ) = \cos(65^\circ - 25^\circ)/2 = \cos(40^\circ)/2$ et $\sin(80^\circ) = 2\sin(40^\circ) \cdot \cos(40^\circ)$.

On est ramené à l'équations $\sin(\alpha + 10^\circ) = 4\sin(\alpha).\sin(40^\circ).\sin(50^\circ) = 2\sin(\alpha).\cos(10^\circ)$

c'est à dire: $\sin(\alpha + 10^\circ) = \sin(\alpha).\cos(10^\circ) + \cos(\alpha).\sin(10^\circ) = 2\sin(\alpha).\cos(10^\circ)$ qui entraine $\tan(\alpha) = \tan(10^\circ)$ avec comme unique solution $\alpha = 10^\circ$