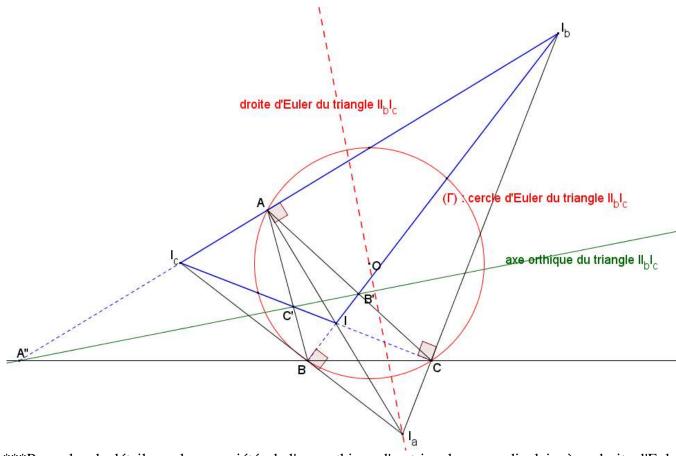
Problema n°847

Grinberg, D. (2003) Comunicación al foro Hyacinthos.

Sean AA', BB', y CC' las bisectrices internas del triángulo ABC.

Demostrar que B'C' es perpendicular a OIa, siendo O el circuncentro y siendo Ia el excentro del vértice A.

Solution proposée par Philippe Fondanaiche



On désigne par I le centre du cercle inscrit du triangle ABC et par I_a , I_b et I_c les centres des cercles exinscrits associés aux sommets A,B et C. Par construction le point I_a est l'orthocentre du triangle II_b I_c .

Les points A,B et C sont les pieds des hauteurs sur les trois côtés I_bI_c , II_b et II_c . Le triangle II_b I_c admet donc le cercle (Γ) circonscrit au triangle ABC comme cercle d'Euler et sa droite d'Euler qui joint O centre de (Γ) à l'orthocentre I_a est la droite OI_a . Par ailleurs, les droites BC,CA et AB qui joignent les pieds des hauteurs coupent respectivement les côtés du triangle II_b I_c respectivement aux points A",B' et C'. Ces trois points sont alignés et appartiennent à l'axe orthique du triangle qui est perpendiculaire à sa droite d'Euler***.

Conclusion: OIa est perpendiculaire à B'C'.

***Pour plus de détails sur les propriétés de l'axe orthique d'un triangle perpendiculaire à sa droite d'Euler, voir:

https://artofproblemsolving.com/community/c6h51168_ao_a_perp_de

https://www.geogebra.org/m/g8J6M7vd

https://en.wikipedia.org/wiki/Orthocentric_system

http://users.math.uoc.gr/~pamfilos/eGallery/problems/OrthicAxis.html

http://www.gogeometry.com/school-college/3/p1233-orthic-axis-triangle-euler-line-perpendicular.htm