
Problema 849

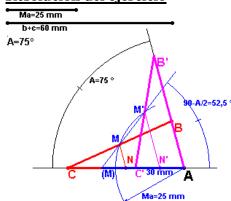
Construir el triángulo cuyos datos son: el valor del ángulo A, m_a, b+c. Santamaría, J. (2017): Comunicación personal.

Resuelto por JULIÁN SANTAMARÍA TOBAR profesor de Dibujo del IES La Serna de Fuenlabrada

El problema se va a resolver por dos métodos similares, por la resolución de un triángulo interior y por la aplicación de traslación paralela.

Primer método, resolución de un triángulo interior al pedido ABC

En el problema resuelto, al tomar los puntos medios M y N de los lados a y b, se observa que el triángulo MNA tienen los siguientes datos: ángulo MNA=180-A, MA= la mediana dada, NA = b/2 y NM = c/2.

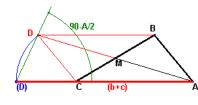

Para dibujar el triángulo MNA se va a obtener previamente el triángulo M(M)A que es el transformado

de la suma de lados NA+NM. El punto (M) es el simétrico del punto M con respecto a la bisectriz exterior del ángulo MNA. La línea M(M) es la línea de proyección de la simetría que relaciona estos dos puntos, por lo tanto, es paralela a bisectriz interior del ángulo MNA, y el valor del ángulo $M(M)N = 90^{\circ}$ -A/2.

NM = N(M) = c/2 por ser simétricos, por lo tanto (M)A = (b+c)/2.

En definitiva, se pueden dibujar los vértices del triángulo M(M)A transformado de la suma de lados NA+NM. En este triángulo M(M)A se conoce, (M)A = (b+c)/2, ángulo $M(M)N = 90^{\circ}-A/2$ y la magnitud MA = mediana del vértice A del triángulo dado

Resolución del ejercicio

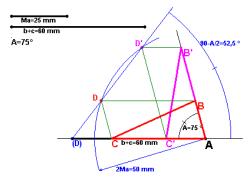


Se dibuja el ángulo A y en uno de los lados se taza el segmento A(M) = (b+c)/2.

Por el vértice (M) se taza el otro lado del ángulo 90°-A/2, y este lado es cortado en el punto M por el arco que tiene centro en el vértice A y su radio es la mediana dada.

El punto N se puede obtener trazando desde el punto M la paralela al lado c. Como los puntos M y N son los puntos medios de los lados a y b, se completa el triángulo.

Segundo método, resolución aplicando una traslación paralela



En el problema resuelto, al hacer el simétrico del vértice A respecto del punto medio M del lado a, resulta el punto D. ACDB forman un paralelogramo, del cual se conoce la suma de lados, un ángulo y la diagonal.

En este caso se dibuja el triángulo DCA que sus magnitudes son el doble en el triángulo MNA de la

primera resolución, pero con la misma construcción.

Resolución del ejercicio

paralelogramo ACDB.

Como en el caso anterior, se dibujan los vértices del triángulo D(D)A transformado de la suma de lados CA+CD.

O sea, se dibuja el ángulo A, y en uno de los lados se taza el segmento A(D)=(b+c).

Por el vértice (D) se taza el otro lado del ángulo 90°-A/2, y este lado es cortado en el punto D por el arco que tiene el centro en el vértice A y su radio es el duplo de la mediana dada.

Los vértices B y C se hallan formando el