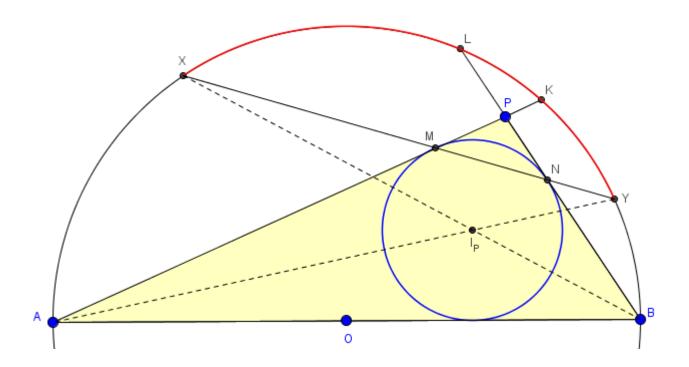
Problema 852.-

Sea P un punto interior de un semicírculo de diámetro AB. La circunferencia inscrita al triángulo ABP es tangente a los lados AP y BP en los puntos M y N, respectivamente. La recta MN corta a la semicircunferencia en los puntos X Y Y.

Pruebe que la medida del arco XY es igual a la medida del ángulo APB.

Referencia desconocida.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.



A la vista de la construcción realizada, encontramos las siguientes relaciones entre ángulos en dicha figura:

Sean $\alpha=4I_pAB=4PAI_p$ y $\beta=4I_pBA=4PBI_p$. Entonces, $4APB=180^\circ-2(\alpha+\beta)$. Además $4PMN=4PNM=\alpha+\beta$, hecho que implica que los puntos X,I_p y B estén alineados. Esto mismo les ocurrirá a los puntos Y,I_p y A.

Por otra parte, tenemos que $\angle AYB = 90^{\circ} \rightarrow \angle ABY = 90^{\circ} - \alpha$.

De este modo, $\angle LBY = \angle ABY - \angle ABL = 90^{\circ} - \alpha - 2\beta$

La medida del ángulo $\angle XBL = \beta$.

Si sumamos ambos ángulos, obtenemos $\angle XBY = \angle LBY + \angle XBL = (90^{\circ} - \alpha - 2\beta) + \beta = (90^{\circ} - \alpha - \beta)$. En definitiva, hemos conseguido probar que:

$$Arco(XY) = 2 \angle XBY = 180^{\circ} - 2(\alpha + \beta) = \angle APB \rightarrow Arco(XY) = \angle APB$$
. $cqd \blacksquare$