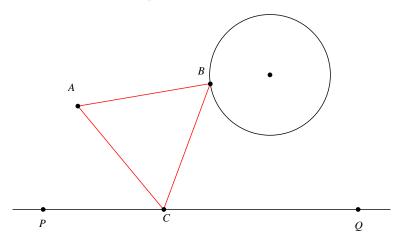
Problema 853. Construir un triángulo equilátero de tal modo que uno de sus vértices se halle sobre un punto A, otro sobre la recta dada PQ y el tercero sobre la circunferencia dada (O; r). Analizar las soluciones según la posición de la recta.

Propuesto por César Beade Franco, profesor de matemáticas jubilado de Cee (La Coruña) Fridman, L. M. (2000): Metodología para resolver problemas de matemáticas.

Solución de Ercole Suppa.

Análisis.

Supongamos que el problema está resuelto y indicamos con ABC el triángulo que verifica las condiciones requeridas.



Entonces la rotación de centro A y la amplitud 60° transforma C en B y envía la línea PQ en la línea r' que pasa por B. Por lo tanto B es uno de los puntos de intersección de la recta r' con la circunferencia (O; r), mientras que el punto C es el intersección de la recta PQ con la mediatriz de AB.

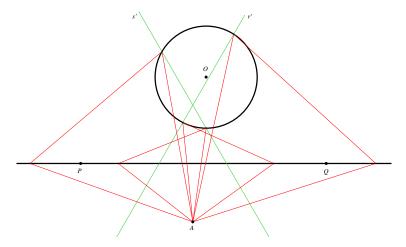
Tenemos por tanto, la siguiente:

Construcción.

- construir la recta r' imagen de la recta PQ por medio de la rotación de centro A y la amplitud 60° ;
- construir los puntos B_1 , B_2 de intersección de la recta r' con la circunferencia (O; r);
- construir los puntos de intersección C_1 y C_2 de la recta PQ con las mediatrices de los segmentos AB_1 y AB_2 , respectivamente;

\bullet dibujar los triángulos AB_1C_1 y AB_2C_2

De esta manera, obtenemos, en general, dos triángulos equiláteros que verifican las condiciones requeridas. Del mismo modo, si giramos en sentido horario, podemos obtener dos triángulos más.



DISCUSIÓN.

Denotamos con r', s' las rectas obtenidas por la rotación de la recta PQ alrededor a A a través de un ángulo de 60° en sentido antihorario y en sentido horario, respectivamente. El número de soluciones es igual al número de puntos de intersección de la circunferencia (O;r) con las rectas r' y s'. Por lo tanto el problema permite como máximo cuatro soluciones.