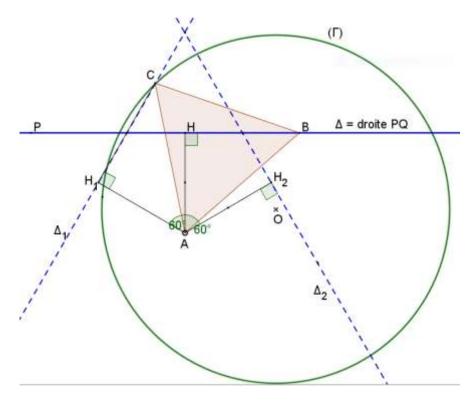
Problema n°853

Construir un triángulo equilátero de tal modo que uno de sus vértices se halle sobre un punto A, otro sobre la recta dada PQ y el tercero sobre la circunferencia dada (O;r). Analizar las soluciones según la posición de la recta.

Fridman, L. M. (2000): Metodología para resolver problemas de matemáticas (pág. 110)

Solution proposée par Philippe Fondanaiche



On désigne par (Δ) la droite PQ et par (Γ) le cercle de centre O et de rayon r.

On trace les droites (Δ_1) et (Δ_2) transformées de la droite (Δ) par la rotation de centre A et d'angles respectifs + 60° (sens anti-horaire) et – 60° (sens horaire).

On a les six cas possibles suivants:

- 1) le cercle (Γ) a quatre points d'intersection avec les droites (Δ_1) et (Δ_2). C'est le cas de la figure ci-contre. Quatre triangles équilatéraux distincts peuvent être construits.
- 2) le cercle (Γ) a deux points d'intersection avec la droite (Δ_1)[ou (Δ_2)] et il est tangent à (Δ_2). Trois triangles équilatéraux distincts peuvent être construits.
- 3) le cercle (Γ) a deux points d'intersection avec la droite (Δ_1)[ou (Δ_2)] mais ne coupe pas la droite (Δ_2)[ou (Δ_1)]. Deux triangles équilatéraux distincts peuvent être construits.
- 4) le cercle (Γ) est tangent aux droites (Δ_1) et (Δ_2). Deux triangles équilatéraux distincts peuvent être construits.
- 5) le cercle (Γ) est tangent à l'une des deux droites (Δ_1)[ou (Δ_2)] sans couper la seconde.Un seul triangle équilatéral peut être construit.
- 6) le cercle (Γ) n'a pas de point d'intersection avec les deux droites (Δ_1) et (Δ_2). La construction du triangle équilatéral est impossible.

S'il y a au moins un point d'intersection, par exemple le point Cde la figure ci-contre à l'intersection de (Δ_1) et de (Γ) , la construction du triangle équilatéral ABC est la suivante: on trace les projections H et H_1 de A sur (Δ) et sur (Δ_1) puis le point B sur (Δ) tel que $HB = H_1C$ et $\angle AHB = \angle AH_1C = +90^\circ$. Le point B est le transformé de C par la rotation de centre A et d'angle -60° .