Problema 854

El triángulo ABC es acutángulo y no isósceles.

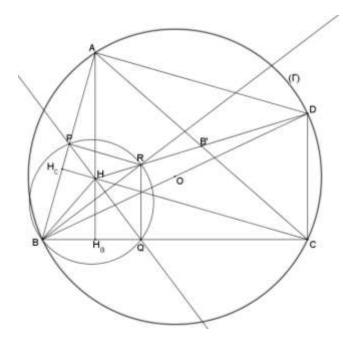
Las alturas desde A y C, AH_a y CH_c se cortan en H.

La bisectriz del ángulo agudo entre las alturas AH_a y CH_c corta al lado AB en P y al lado BC en Q. La bisectriz interior del ángulo B corta en R a la recta que une el ortocentro H con el punto medio B' del lado AC.

Demostrar que los puntos B,P,R,Q están en una circunferencia.

Bellot, F. (2008): Revista Escolar de la OIM (Problema 151)

Solution proposée par Philippe Fondanaiche



Soit D le point diamétralement opposé au sommet sur le cercle (Γ) circonscrit au triangle ABC. Il est bien connu que :

- D est le symétrique de H par rapport à B' et que le quadrilatère ADCH est un parallélogramme.
- les droites BD et BH sont symétriques par rapport à la bissectrice BR de l'angle ∠ABC.

 Les triangles rectangles HBH_c et DBC sont semblables. On a donc BH/BD = BH_c/BC.

 D'après la loi des sinus dans le triangle DBH,

 RH/RD = BH/BD. D'où RH/RD = BH_c/BC.

 Par ailleurs la droite PQ bissectrice de l'angle

 ∠CHH_a et les triangles rectangles AHH_c, ,CHH_a et CBH_c sont semblables.

D'où $PH_c/AP = QH_a/QC = BH_c/BC = HR/HD$. Les droites PR et QR sont donc respectivement parallèles à HH_c et HH_a . Les angles $\angle APR$ et $\angle BQR$ sont donc droits et les quatre points B,P,R et Q sont cocylciques. C,q,f,d.