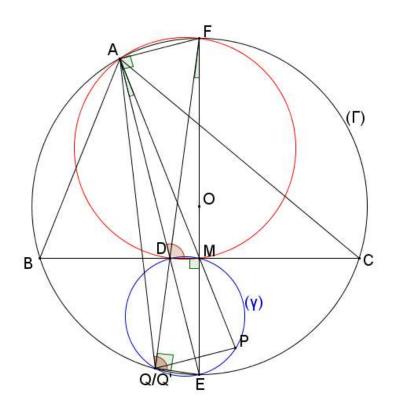
Problema 855

Sean un triángulo escaleno ABC , (Γ) el círculo circunscrito a este triángulo y M el centro del lado BC La bisectriz del ángulo en A cruza el lado BC en el punto D y el círculo (Γ) en el punto E El círculo circonscrito al triangulo DEM intersecta la recta AM en el un segundo punto P y el círculo (Γ) en un segundo punto Q . Demostrar que el triángulo APQ es isósceles.

Solution proposée par Philippe Fondanaiche



On trace le point F diamétralement opposé au point E sur le cercle (Γ) . Le point E étant au milieu de l'arc BC qui ne contient pas le sommet A, les trois points E,F et M sont sur la médiatrice du côté BC passant par le centre O de (Γ) .

Comme $\angle DMF = \angle DAF = 90^{\circ}$, les quatre points A,D,M et F sont cocycliques. D'où $\angle DAM = \angle DFM$.

On trace la droite FD qui coupe le cercle (Γ) en un point Q'. Comme \angle DQ'E = \angle DME = 90°, les quatre points D,M,E et Q' sont sur un même cercle .Le point Q' est donc confondu avec le point Q, deuxième point d'intersection du cercle (γ) circonscrit au triangle DEM avec le cercle (Γ).

Comme $\angle EAQ = \angle EFQ$, on en déduit $\angle EFQ = \angle DFM = \angle DAM = \angle EAM = \angle EAP$.

D'où $\angle EAP = \angle EAQ$. La droite AD est la bissectrice de l'angle $\angle PAQ$.

Par ailleurs $\angle AQE = 180^{\circ} - \angle AFE = 180^{\circ} - (180^{\circ} - \angle ADM) = \angle ADM$.

Les triangles ADM et AQE sont donc semblables. D'où AD/AM = AQ/AE soit AD.AE = AM.AQ. La puissance de A par rapport au cercle (γ) est définie par AD.AE = AM.AP

Il en résulte AM.AQ = AM.AP.

Conclusion: AP = AQ. C.q.f;d.