Problema 857.-

Dado un triángulo ABC, sean O su circuncentro, R su circunradio I su incentro y sean I_A , I_B , I_C los exincentros.

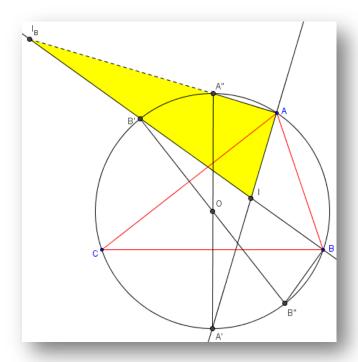
Sea J el circuncentro y σ el circunradio del triángulo I_A , I_B , I_C . Demostrar que O, I, J están alineados OJ = OI, y que $\sigma = 2R$.

Gallatly, W. (1929): The modern geometry of triangle. London: Francis Hodgson, 89 (pag. 1)

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

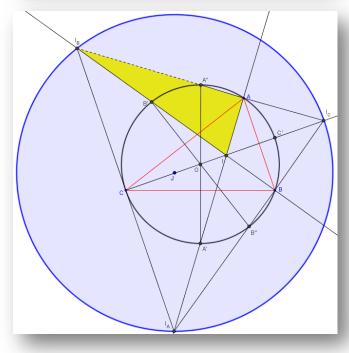
Sean construidos el triángulo ABC y su circunferencia circunscrita, Γ de centro O. Observamos que la bisectriz interior en A determina en Γ el punto A'. Este punto pertenece también a la mediatriz del lado BC. Sea I_B , el exincentro respecto del vértice B. Sea también A", el punto diametralmente opuesto al punto A'. Como AA' $\perp AA$ '', los puntos A, A", I_B estarán alineados.

De igual modo, la bisectriz interior en B determinará en Γ el punto B', estando alineados I, B', I_B .



Si consideramos el triángulo IAI_B , rectángulo en A, tenemos que la medida del ángulo $\not \triangle AII_B = \frac{\not \triangle A}{2} + \frac{\not \triangle B}{2}$ y, por tanto el ángulo complementario $\not \triangle AI_BI = \frac{C}{2}$.

Como quiera que el ángulo $\angle AB'I = \angle C$, resultará pues que el punto B' será el punto medio del segmento II_B . De forma similar, los puntos A' y C' serán los puntos medios de los segmentos II_A y II_C , respectivamente.



Por tanto, la homotecia de centro, el punto I y razón 2, transforma los puntos A',B' y C' de la circunferencia Γ en los puntos I_A , I_B , I_C , y así la circunferencia Γ se transforma en la circunferencia de centro J y radio σ , que circunscribe al triángulo I_A , I_B , I_C . La relación de radios $\sigma=2R$, resultará evidente así de esta transformación. También lo será que los puntos O,I, J estén alineados y que OI=OI.