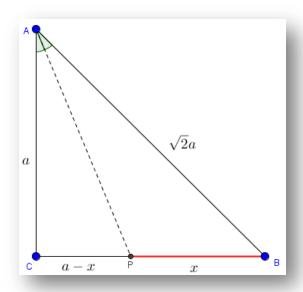
Problema 860.-

En el triángulo rectángulo isósceles ABC, AC = BC. La bisectriz del ángulo A corta a BC en el punto P. Demostrar que la longitud del segmento PB es igual al diámetro del círculo inscrito de ABC.

Komal Septiembre 2002

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.



Designamos por a=AC=BC y x=PB. Por tanto, $AB=\sqrt{2}a$.

Por el teorema de la bisectriz, $\frac{a}{a-x}=\frac{\sqrt{2}a}{x} \to x=\frac{\sqrt{2}a}{1+\sqrt{2}}.$ Si p es el semiperímetro del triángulo ABC, r el radio del círculo inscrito de ABC y S el valor de su área, entonces:

$$S = p.r = \frac{1}{2}a^2 \rightarrow r = \frac{a^2}{2p} = \frac{a^2}{2a + \sqrt{2}a} = \frac{a}{2 + \sqrt{2}}$$

En efecto, se verifica que $2r=PB o rac{2a}{2+\sqrt{2}} = rac{\sqrt{2}a}{1+\sqrt{2}}$