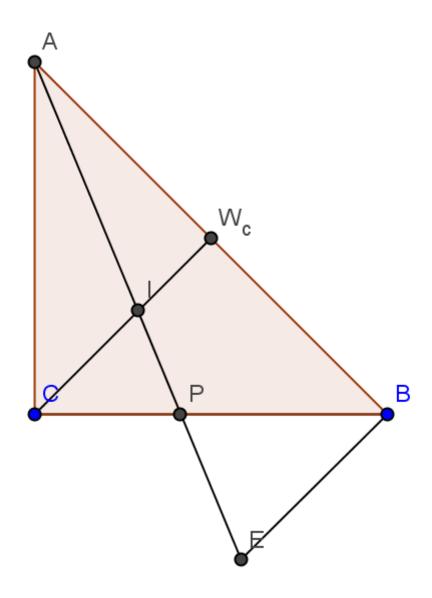
Problema 860

C. 683. En el triángulo rectángulo isósceles ABC, AC = BC. el ángulo bisectriz de A corta BC en el punto P. Demostrar que la longitud del segmento PB es igual al diámetro del círculo inscrito de ABC

Komal Septiembre 2002

Solución del director

En un triángulo rectángulo isósceles, tenemos:



La bisectriz CW_c es tal que IW_c es el radio de la inscrita.

Por tanto dado que W_c es el pie de la bisectriz de ACB, es

$$AW_c = \frac{cb}{a+b} = \frac{ca}{2a} = \frac{c}{2}$$

Así, trazando la bisectriz AP. Prolongada hasta el punto E, en el que la perpendicular por B la corta, tenemos que $BE=2~IW_c=2r$.

El triángulo BPE es isósceles pues $\angle BPE = \angle APC = 90^{\circ} - 22.5^{\circ} = 67.5^{\circ}$ y $\angle BPE = 45^{\circ}$.

Así, cqd, BP=BE=2r.

Ricardo Barroso Campos.

Jubilado. Sevilla