Problema 860

C. 683. En el triángulo rectángulo isósceles ABC, AC = BC. el ángulo bisectriz de A corta BC en el punto P. Demostrar que la longitud del segmento PB es igual al diámetro del círculo inscrito de ABC Komal Septiembre 2002

Solution proposée par Philippe Fondanaiche

Sans perte de généralité, on pose AC = BC = 1. D'où $AB = \sqrt{2}$.

Le périmètre p du triangle ABC est égal à $p = AC + BC + AB = 2 + \sqrt{2}$

Soir 2r le diamètre du cercle inscrit du triangle ABC.

On a r*p = 2 fois l'aire du triangle ABC = 1. D'où $2r = 2/(2 + \sqrt{2})$) = $2 - \sqrt{2}$.

AP étant bissectrice de l'angle en A, on a les égalités:

$$PB/AB = PC/AC = (PB + PC) / (AB + AC) = 1/(\sqrt{2} + 1) = \sqrt{2} - 1.$$

Il en résulte que PB = AB.($\sqrt{2} - 1$) = $2 - \sqrt{2} = 2r$.

C.q.f.d.