Problema n°862

Sea un triángulo rectángulo ABC cuya hipotenusa BC es igual a 9 centrimetros.

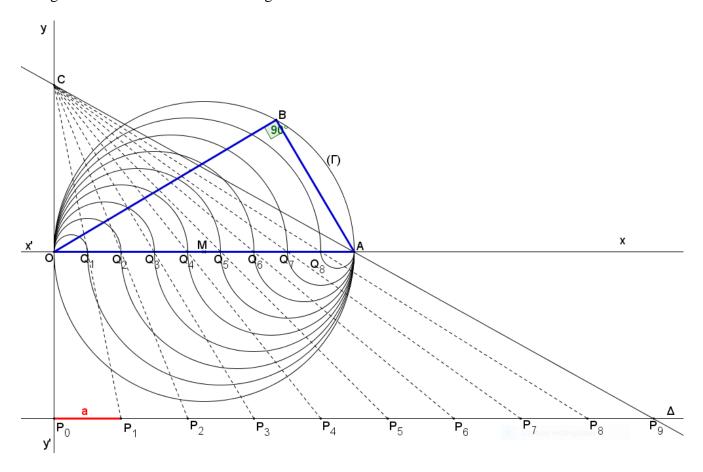
Con la ayuda de un compás y de una regla no graduada compartir esta hipotenusa en 9 segmentos idénticos. Deducir de eso el reparto del círculo circunscrito al triángulo ABC en nueve zonas de la misma área.

Solution proposée par Philippe Fondanaiche

Soit OA l'hypoténuse du triangle OBA rectangle en B. Par hypothèse OA = 9 centimètres.

On prend la droite [OA] pour axe des abscisses x'Ox et la perpendiculaire en O à OA comme axe des ordonnées y'Oy.

A l'aide de la règle et du compas,on trace le milieu M de OA puis le cercle (Γ) de centre M circonscrit au triangle OBA. L'aire de ce cercle est égale à $A = 81\pi/4 = 20.25\pi$ cm².



Pour partager le segment OA en 9 segments identiques de longueur 1 centimètre avec la régle non graduée et le compas, on réalise une construction auxiliaire. Il en existe de nombreuses. L'une d'elles consiste à tracer une perpendiculaire Δ à l'axe des ordonnées en un point P_0 de cet axe situé en dessous de l'origine (voir supra)

On choisit une longueur a suffisamment grande (> 1 cm) qui permet de tracer le point P_1 de Δ à l'intersection de cette droite et du cercle de centre P_0 et de rayon a. De la même manière on construit les points $P_2,P_3,...P_9$ régulièrement espacés de la distance a sur la droite Δ les uns à la suite des autres. La droite P_9A coupe l'axe des ordonnées au point C. Les droites $CP_1,CP_2,...CP_8$ coupent OA aux points $Q_1,Q_2,...Q_8$ avec $Q_0 = O$ et $Q_9 = A$. D'après le théorème de Thalès les neuf rapports $Q_1,Q_2,...Q_8$ sont régulièrement espacés de 1 centimètre.

Le partage du cercle (Γ) en neuf zones de même surface s'obtient alors en traçant 8 paires de demi-cercles situés de part et d'autre de l'axe des abscisses et ayant respectivement pour diamètres OQ_i et Q_iA . On obtient neuf zones non congruentes qui rappellent les courbures de la lettre S placée à l'horizontale. On vérifie que ces neuf zones ont la même aire. On a $OO_i=i$ centimètres et $O_iA=(9-i)$ centimètres. L'aire de $i^{\text{ème}}$ zone qui s'appuie sur les points $O_iA_iA_i$ et O est égale à: $\pi ((i+1)^2-i^2)/8+\pi((9-i)^2-(8-i)^2)/8=\pi(2i+1)/8+\pi(17-2i)/8=2.25\pi=A/9$ qui ne dépend pas de i. C.q.f.d.