Pr. Cabri 863

Demostrar que el triángulo isósceles tiene el menor perímetro y el menor radio del círculo mínimo entre todos los triángulos con lado a y altura ha determinados.

Gashkov, S. B. (2015): Desigualdades geométricas : Una guía con más de 600 problemas y teoremas. Ed. URSS

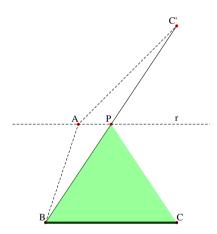
Propuesto por César Beade Franco.

Solución por César Beade Franco

863 A.

El vértice A estará situado sobre una paralela r al lado a y que dista ha de r. Como a fijo el perímetro será mínimo cuando lo sea la AB+AC. El valor mínimo de esta magnitud es BC', siendo C' el simétrico de C respecto a r.

Dicho valor se da cuando A está situado en P punto medio de AC' (dibujo), o sea, PBC isósceles.

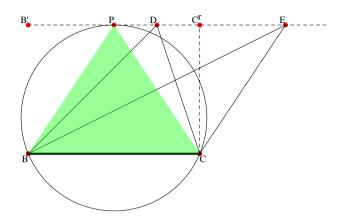


■ 863 B.

Si un triángulo es acutángulo o rectángulo (diámetro igual a hipotenusa), el círculo mínimo que lo contiene es el circunscrito y si es obtusángulo, es aquel que tiene como diámetro el lado mayor.

El vértice A estará situado sobre una paralela r al lado a y que dista ha de r.

Supóngamos que ha $<\frac{a}{2}$. En este caso, PBC isósceles es obtusángulo con diámetro mínimo de longitud a menor o igual que el de otro triángulo ABC. Cierto que hay una infinidad de triángulos con este diámetro mínimo.



Si ha $\geq \frac{a}{2}$, el triángulo isósceles PBC tiene como círculo mínimo el circunscrito de diámetro $\frac{a}{\mathrm{senP}}$. Si la posición del punto A está entre B' y C' (D en el dibujo), su círculo mínimo es circunscrito con diámetro $\frac{a}{\mathrm{senD}} > \frac{a}{\mathrm{senP}}$, al ser el ángulo D< ángulo P.

Y si A está fuera del segmento B'C' (E en el dibujo), es obtusángulo y su círculo mínimo tiene diámetro BE>BC'> $\frac{a}{\text{senP}}$.