Problema n° 866

Sean tres puntos A, B y C tomados en este orden sobre el eje de las abscisas.

Trazamos el círculo (Γ) de diámetro AB y de centro O.

Cualquier recta que pasa por C corta el círculo (Γ) en los puntos D y E [A, D, E y B en este orden sobre el semicírculo (Γ)]

El círculo circunscrito al triángulo ACD y circulo circunscrito al triángulo BCE se cortan en un segundo punto F.

Las rectas AD y BE se cortan al punto P

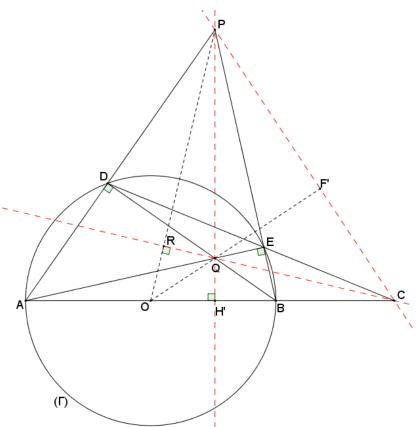
Las rectas AE y BD se cortan al punto Q

El círculo circunscrito al triángulo OFP corta a la recta AB en el segundo punto H

Q1 Demostrar que el triángulo OPH es rectángulo.

Q2 Demostrar que los puntos O, Q y F son alineados

Solution proposée par Philippe Fondanaiche



On considère le quadrangle complet ABED et les trois points C,P,Q qui lui sont associés respectivement à l"intersection des droites [AB] et [ED], des droites [AD] et [BE], enfin des diagonales [AE] et [BD]. Ce quadrangle est inscrit dans le cercle (Γ) de diamètre AB = 2ρ et de centre O.

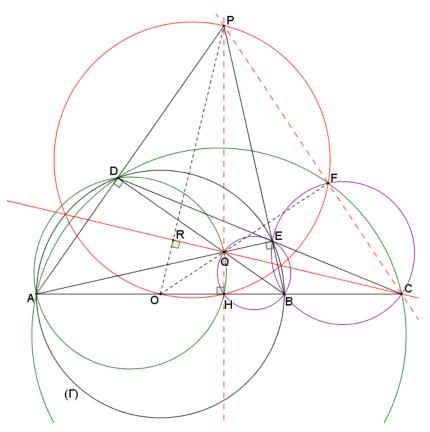
On a les propriétés suivantes:

- PQ est la polaire de C par rapport à (Γ)
- CQ est la polaire de P par rapport à (Γ)
- CP est la polaire de Q par rapport à (Γ)

Il en résulte que:

- la droite [PQ] est perpendiculaire à la droite [AB] qu'elle rencontre au point H',
- la droite [OQ] est perpendiculaire à la droite [CP] qu'elle rencontre au point F',
- la droite [CQ] est perpendiculaire à la droite [OP] qu'elle rencontre au point R,

Nous allons démontrer que les points H' et F' sont respectivement confondus avec les points H et F qui sont définis dans l'énoncé.



AB étant le diamètre du cercle (Γ), les angles \angle ADB et \angle AEB sont droits. Les quatre points A,D,Q et H' sont donc sur un même cercle. Il en est de même des quatre points BEQH'.

Comme C a pour polaire PH', **par inversion de pôle O et de puissance** ρ^2 , le cercle (ADH') devient le cercle (ADC) et le cercle (BEH') devient le cercle (BEC). Il en résulte que l'intersection F des cercles (ADC) et (BEC) est l'inverse de Q c'est à dire F'. Les points F et F' sont donc confondus et les points O,Q,F sont alignés (cf question Q₂).

Par cette même inversion la droite CQ devient le cercle passant par O d'une part et par les points transformés de C,Q er R à savoir H',F' et P. Il s'agit donc du cercle OF'P de diamètre OP qui est confondu avec le cercle OFP. Ce cercle coupe la droite [AB] au point H qui est donc confondu avec le point H'. On a $\angle OHP = 90^\circ$. Le triangle OHP est rectangle (cf question Q_1)