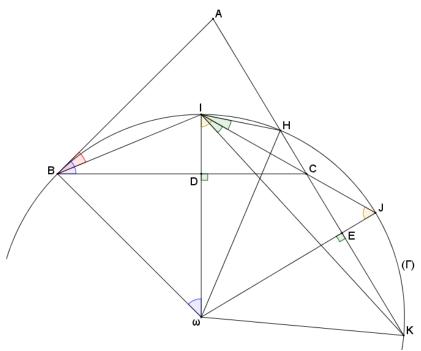
Problema 868

44.- Una circunferencia que es tangente a AB en B y contiene al incentro I de un triángulo ABC, corta a la recta AC en H y K. Demostrar que IC es bisectriz del ángulo HIK.

Altshiller-Court, N. (1952) College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, (p. 31),

Solution proposée par Philippe Fondanaiche



On désigne par (Γ) le cercle de centre ω tangent en B au côté AB et passant par le centre I du cercle inscrit du triangle ABC. Le point D est à l'intersection de BC et de ω I.

Comme AB est tangent en B à (Γ),on a les relations d'angles: \angle ABI = \angle CBI = \angle B ω I/2 et \angle ω BI = 90° - \angle ABI .

Comme le triangle ωBI est isocèle, on a $\angle \omega IB = (180^{\circ} - \angle B\omega I)/2 = 90^{\circ} - \angle CBI$.

Le triangle BDI est donc rectangle en D. Il en est de même du triangle CDI.

Du point ω on mène la perpendiculaire à la droite (AC), qui coupe (AC) au point E et la droite (CI) au point J.

Le quadrilatère CD ω E avec deux angles droits est inscriptible. D'où \angle D ω E = \angle I ω J = \angle ACB. Par ailleurs \angle DIC = \angle ω IJ = 90 $^{\circ}$ - \angle DCI = 90 $^{\circ}$ - \angle ACB /2.

D'où $\angle \omega JI = 180^\circ - \angle \omega IJ - \angle I\omega J = 180^\circ - (90^\circ - \angle ACB / 2) - \angle ACB = 90^\circ - \angle ACB / 2$ Le triangle IωJ est donc isocèle de sommet ω et le cercle (Γ) passe par le point J.

Le cercle (Γ) coupe la droite (AC) aux points H et K. Le triangle H ω K est isocèle et ω J est la médiatrice de HK. Les arcs HJ et JK sont égaux. IC est donc la bissectrice de \angle HIK.