Problema 869

4.- Sea un triángulo ABC, y sean H_a, H_b y H_c los pies de sus alturas.

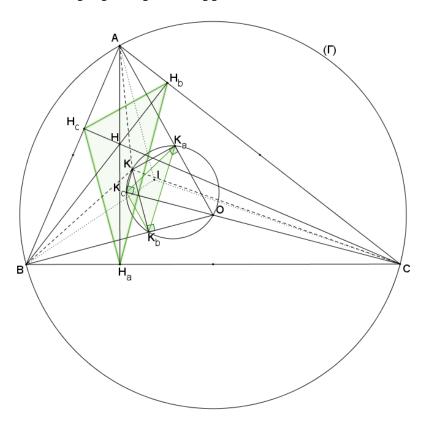
Sea O el circuncentro, y K el punto de Lemoine.

Sean K_a, K_b y K_c las proyecciones ortogonales de K sobre OA, OB y OC.

Demostrar que el triángulo K_aK_bK_c es semejante al órtico H_aH_bH_c

Delehame, H. (2004) Quadrature Janvier- Mars

Solution proposée par Philippe Fondanaiche



Lemme: les cinq points O,K,K_a,K_b et K_c sont cocycliques.

Démonstration: par construction , les trois triangles OKK_a , OKK_b et OKK_c sont rectangles et admettent OK pour hypoténuse.

Il en résulte que $\angle K_c K_a K_b = \angle K_c O K_b = \angle OBC + \angle OCB = 180^\circ - \angle BOC = 2(90^\circ - \angle BAC)$.

Soit H l'orthocentre du triangle ABC.On a : $\angle H_cH_aH_b = \angle H_cH_aA + \angle H_bH_aA$ Les quatre points B,H_c,H et H_a sont cocycliques de même que les quatre points C,H_b,H et H_a. On a donc $\angle H_cH_aA = \angle H_cH_aH = \angle H_cBH = \angle ABH_b = 90^\circ - \angle BAC$ et $\angle H_bH_aA = \angle H_bH_aH = \angle H_bCH = \angle ACH_c = 90^\circ - \angle BAC$ Donc $\angle H_cH_aH_b = 2(90^\circ - \angle BAC) = \angle K_cK_aK_b$ De la même manière $\angle H_aH_cH_b = \angle K_aK_cK_b$ et $\angle H_aH_bH_c = \angle K_aK_bK_c$

Conclusion: les triangles $K_aK_bK_c$ et $H_aH_bH_c$ sont semblables

Nota: le fait que K est le point de Lemoine n'intervient pas dans la démonstration. La propriété reste vraie pour tout point K du plan.