Quincena del 15 al 28 de Febrero de 2018.

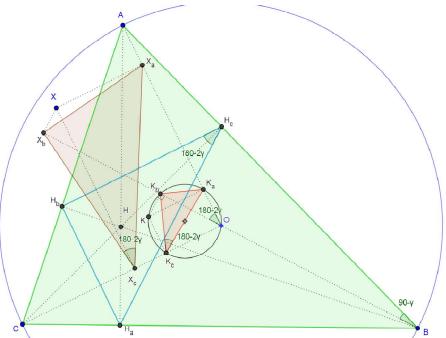
Problema 869.-

4.- Sea un triángulo ABC, y sean H_{o} , H_{b} y H_{c} los pies de sus alturas. Sea O el circuncentro, y K el punto de Lemoine. Sean K_{o} , K_{b} y K_{c} las proyecciones ortogonales de K sobre OA, OB y OC.

Demostrar que el triángulo $K_aK_bK_c$ es semejante al órtico $H_aH_bH_c$.

Delehame, H. (2004) Quadrature Janvier- Mars

Solución de Saturnino Campo Ruiz, profesor de Matemáticas jubilado, de Salamanca.



Por construcción, cada proyección de K sobre un radio está situado en la circunferencia de diámetro el segmento OK. Por tanto, todas esas proyecciones están en esa circunferencia. Sabemos que el ángulo en H_c del triángulo órtico tiene amplitud $180-2\gamma$, suplementario del ángulo central $\angle AOB$. En la circunferencia que circunscribe a O,K y sus proyecciones tenemos el ángulo $\angle AOK_b$ suplementario del ángulo central $\angle AOB$, que es igual, -por abarcar el mismo arco- al ángulo $\angle K_aK_cK_b$. Por tanto $\angle K_aK_cK_b=180-2\gamma=\angle H_aH_cH_b$.

Y análogamente el resto.

Obsérvese que es indiferente cuál sea el punto K, en la figura hemos tomado un punto arbitrario X con el que se cumple el enunciado.