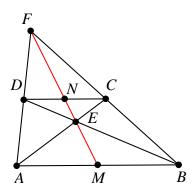
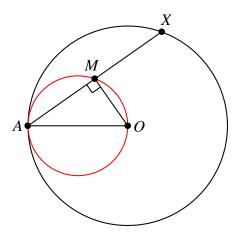

Problema 871. Sea un triángulo ABC y Γ su círculo circunscrito. Sea γ el círculo que pasa por A y es tangente en C a la recta BC. Sea P un punto genérico de γ . La recta AP corta la recta BC en el punto D y el círculo Γ en el punto E. La recta BP y la recta CE se cortan en el punto F. La recta F y la recta F se cortan en el punto F. Determinar el lugar de F cuando F recorre todo el círculo F.

Fondanaiche, P. (2018): Comunicación personal.

Solución de Ercole Suppa. La solución de este bonito problema sigue directamente de los siguientes hechos bien conocidos:

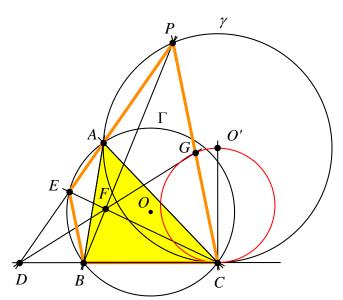

Lema 1. (Reim) Sean γ_1 y γ_2 dos circunferencias que pasan por A y B; sean C y D dos puntos de γ_1 , de modo que CA corta γ_2 en E. Si DB es tangente a γ_2 en B entonces $CD \parallel EB$.

Prueba. La demostración se da en


http://jl.ayme.pagesperso-orange.fr/Docs/3.pdf

Lema 2. Sea ABCD un trapecio, sean M y N los puntos medios de AB y CD respectivamente y sean $E = AC \cap BD$, $F = AD \cap BC$. Los puntos M, E, N y F están alineados.

Prueba. La demostración se propone como ejercicio para el lector.


Lema 3. El lugar de los puntos medios de las cuerdas que salen de un punto A de una circunferencia del centro O es el círculo de diámetro AO.

Prueba. Sea AX una genérica cuerda saliente de A y sea M su punto medio. Como AM es perpendicular a AX, tenemos que M ve AO bajo un ángulo recto. Por lo tanto, el lugar descrito por M es la circunferencia del diámetro AO.

Volviendo ya al problema original observamos que, como DC es tangente a γ en C, para el lema 1 tenemos que $BE \parallel CP$. Por lo tanto CPEB es un trapecio y luego del lema 2 se deduce que G es el punto medio de CP.

Finalmente para el lema 3 tenemos que el lugar de G cuando P recorre todo el círculo γ es la circunferencia de diametro AO', donde con O' hemos indicado el centro de γ .

