Problema n°871

Sea un triángulo ABC y (Γ) su círculo circunscrito.

Sea (γ) el círculo que pasa por A y es tangente en C a la recta BC.

Sea P un punto corriente de (γ) .

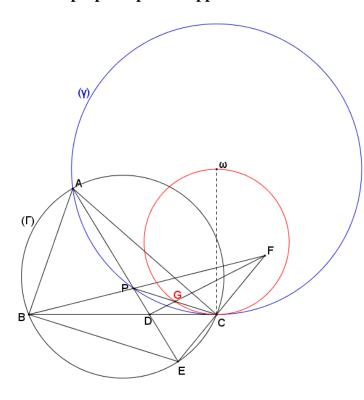
La recta (AP) corta la recta (BC) al punto D y el círculo ((Γ) al punto E.

La recta (BP) y la recta (CE) se cortan al punto F

La recta (DF) y la recta (CP) se cortan al punto G.

Determinar el lugar de G cuando P recorre todo el círculo (γ)

Solution proposée par Philippe Fondanaiche



Comme le cercle (γ) de centre ω est tangent en C à la droite BC,on a la relation d'angles: \angle PAC = \angle PCB. Par ailleurs comme le quadrilatère ABEC est inscrit dans le cercle (Γ) on a: \angle PAC = \angle EAC = \angle EBC D'où \angle EBC = \angle PCB. Le quadrilatère BECP est un trapèze et d'après le <u>théorème du trapèze</u> la droite joignant le point d'intersection des côtés non parallèles au point d'intersection des diagonales, passe par les milieux des côtés parallèles.

La droite DF passe donc par le milieu G de CP. Le lieu de G est donc le cercle homothétique du cercle (γ) dans une homothétie de cntre C et de coefficient 1/2. C'est le cercle de diamètre $C\omega$.