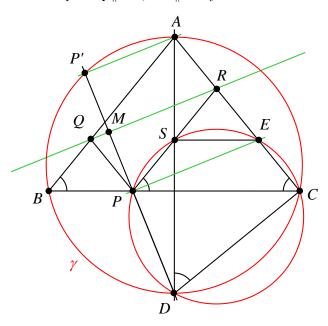
Problema 872. Sea P cualquier punto de la base de un triángulo isósceles. Sean Q y R las intersecciones de los lados iguales con las rectas que contienen a P paralelas a los mismos. Probar que la reflexión de P según la recta QR pertenece a la circunferencia circunscrita al triángulo dado.

Leigh, R.B., Liu, A. (2011): Hungarian Problem Book IV. MAA.

Solución de Ercole Suppa. Sea γ la circunferencia circunscrita al triángulo ABC; sea D la segunda intersección de la bisectriz de $\angle A$ con γ y observamos que AD también es la mediatriz de BC; sea P' la segunda intersección de DP con γ ; sean $Q \in AB$, $R \in AC$ tales que $PQ \parallel AC$, $PR \parallel AB$ y sea $S = PR \cap AD$.



La solución sigue directamente de los siguientes hechos:

- (1) el cuadrilátero PDCS es cíclico, siendo $\angle SPC = \angle ABC = \angle ADC$;
- (2) sea E la la segunda intersección de AC con la circunferencia $\odot(PDCS)$;
- (3) siendo $\angle SPC = \angle ECP$ tenemos que RP = RC, SP = EC y $SE \parallel BC$;
- (4) siendo RP = RC y SP = EC tenemos que RE = RS;
- (5) siendo RE = RS y $\angle ASE = 90^{\circ}$ tenemos que AR = RE = RS;
- (6) siendo AQPR un paralelogramo tenemos AR = QP;
- (7) de (5) y (6) se deduce que RE = QP;
- (8) siendo RE = QP y $RE \parallel QP$ tenemos ques QPER es un paralelogramo y, por lo tanto, $PE \parallel QR$;
- (9) del teorema de Reim se deduce que $PE \parallel AP'$;
- (10) de (8) y (9) se deduce que $PE \parallel QR \parallel AP'$ y, por lo tanto AEPP' es un trapecio;
- (11) sea $M = RQ \cap PP'$; siendo AR = RE y $RQ \parallel AP'$ del teorema de Thales se deduce que PM = MP';
- (12) siendo AD un diámetro de la circunferencia γ tenemos que $AP' \perp DP'$;
- (13) siendo $AP' \perp DP'$ y $RQ \parallel AP'$ tenemos que $RQ \perp PP'$;
- (14) siendo $PM = MP' \vee RQ \perp PP'$ tenemos que P' es la reflexión de P según la recta QR y así hemos terminado.