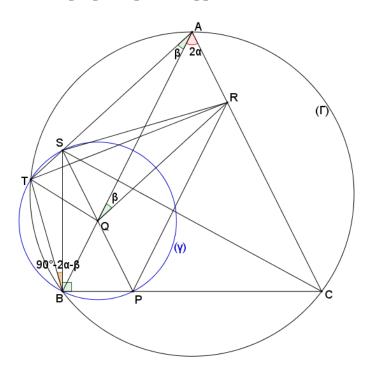
Problema n°872

Problema 2. Sea P cualquier punto de la base de un triángulo isósceles. Sean Q y R las intersecciones de los lados iguales con las rectas que contienen a P paralelas a los mismos. Probar que la reflexión de P según la recta QR pertenece a la circunferencia circunscrita al triángulo dado. Leigh, R.B., Liu, A. (2011): Hungarian Problem Book IV. MAA.

Solution proposée par Philippe Fondanaiche



Soit ABC le triangle isocèle de sommet A. A partir du point P sur le côté BC, on construit le parallélogramme AQPR puis la parallèle à QR passant par A qui coupe la droite PQ au point S. On pose $2\alpha = \angle BAC$ et $\beta = \angle AQR = \angle QAS$

AQPR et ASQR étant par construction deux parallélogrammes, on a PQ = AR = QS. Comme le triangle QBP est isocèle de sommet Q, BQ = QP. Le triangle PBS est rectangle en B. Soit (γ) le cercle de diamètre PS. La droite AS coupe ce cercle au point T. Le triangle QST étant isocèle de sommet Q, on a \angle QST = \angle QTS = \angle CAT = $2\alpha + \beta$.

Il en résulte que le trapèze ARQT est isocèle et que les triangles TRQ,ARQ et PQR sont isométriques. Le point T est donc le symétrique de P par rapport à QR.

Il ne reste plus qu'à démontrer que les quatre points A,B,C et T sont sur le cercle (Γ) circonscrit au triangle ABC..

Or
$$\angle$$
SBT = \angle SQT / 2 = $(180^{\circ} - 2(2\alpha + \beta))/2 = 90^{\circ} - 2\alpha - \beta$.
D'où \angle CBT = $90^{\circ} + (90^{\circ} - 2\alpha - \beta) = 180^{\circ} - (2\alpha + \beta) = 180^{\circ} - \angle$ CAT.

Le point T appartient donc au cercle (Γ). Cqfd.