Problema n°873

Dado un triángulo rectángulo en A, ABC, consideremos un punto genérico P en la recta BC. Tracemos la circunferencia PA que corta a las rectas AB en U y a AC en V. Hallar el lugar geométrico del punto medio de UV cuando P recorre la recta BC.

Dado un triángulo rectángulo en A, ABC, consideremos un punto genérico P en la recta AB. Tracemos la circunferencia PC que corta a las rectas CB en U y a CA en V. Hallar el lugar geométrico del punto medio de UV cuando P recorre la recta AB.

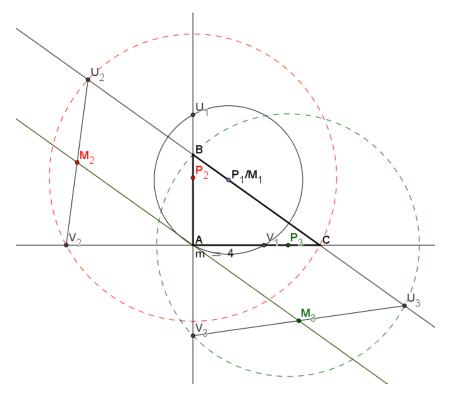
Dado un triángulo rectángulo en A, ABC, consideremos un punto genérico P en la recta AC. Tracemos la circunferencia PB que corta a las rectas BC en U y a BA en V. Hallar el lugar geométrico del punto medio de UV cuando P recorre la recta AC.

Una circunferencia variable tiene su centro sobre la base BC de un triángulo isósceles ABC y contiene el punto A, cortando a los lados AB, AC en Q, R. Hallar el lugar geométrico del punto medio de QR. Altshiller-Court, N. (1952) College Geometry: A Second Course in Plane Geometry for Colleges and Normal Schools, 2nd ed., rev. enl. New York: Barnes and Noble, (p. 149)

Dado el triángulo A(0,0), B(1,0), C(2,4), hallar los tres lugares geométricos análogos a los citados en los casos 1., 2 .y 3.

Barroso, R. (2018): Comunicación personal de los casos 1., 2. 3, y 5., generalizando el caso d) de Altshiller-Court, N.

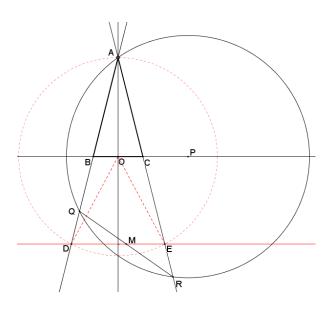
Solution proposée par Philippe Fondanaiche



Soit P₁ un point courant de la droite (BC).Le cercle de centre P₁ et de rayon P₁A coupe les droites (AB) et (AC) aux points U₁ et V₁. Le triangle U₁AV₁ est rectangle en A et le segment U₁V₁ en est l'hypoténuse. Le milieu M₁ de U₁V₁ est donc confondu avec P₁ et quand ce point parcourt la droite (BC), le lieu de M₁ est donc **la droite** (BC) elle-même.

Soit P₂ un point courant de la droite (AB). Le cercle de centre P₂ et de rayon P₂A coupe les droites (BC) et (AC) aux points U₂ et V₂. Comme la droite (AB) est la médiatrice de CV₂, A est le milieu de CV₂. Soit M₂ le milieu du segment U₂V₂. D'après le théorème de Thalès,AM₂ est parallèle à BC. Quand P parcourt la droite (AB), le lieu de M₂ est donc **la parallèle à la droite (BC) passant par A**.

Soit P₃ un point courant de la droite (AB). Le cercle de centre P₃ et de rayon P₃A coupe les droites (BC) et (AC) aux points U₃ et V₃. Soit M₃ le milieu de U₃V₃. Le lieu de M₃ est le même que celui de M₂ la parallèle à la droite (BC) passant par A.



Dans le repére cartésien Oxy, on trace, sans perte de généralité, le triangle ABC dont les coordonnées des sommets sont: A(0,u), B(-1,0), C(1,0).

Les droites AB et AC ont pour équations: (AB) : y = u(x + 1) et (AC) : y = -u(x - 1).

Soit P un point courant de l'axe des abscisses de coordonnées (t,0). Le cercle (Γ) de centre P et de rayon PA a pour équation : $x^2 + y^2 - 2tx - u^2 = 0$.

On en déduit les coordonnées des points Q et R à l'intersection de ce cercle avec les droites (AB) et (AC).

Q:
$$x = 2(t - u^2) / (1 + u^2)$$
 $y = u(2t + 1 - u^2) / (1 + u^2)$

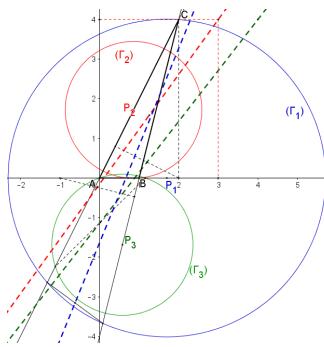
$$R: x = 2(t + u^2) / (1 + u^2) y = u(-2t + 1 - u^2) / (1 + u^2)$$

D'où les coordonnées du milieu M de QR:

B.

$$M: x = 2t/(1 + u^2) y = u(1 - u^2) / (1 + u^2) = constante.$$

L'ordonnée de M étant constante, le lieu de ce point est la parallèle à l'axe des abscisses située à une distance égale à $u(1-u^2)/(1+u^2)$. On construit aisément cette droite, en traçant le cercle de centre O et de rayon OA qui coupe les droites (AB) et (AC) aux points D et E. La droite (DE) est le lieu cherché.



Dans le repère cartésien Oxy, les coordonnées des sommets du triangle ABC sont: A(0,0), B(1,0), C(2,4).

D'où l'équation de la droite (AC) : y = 2x et celle de la droite (BC) : y = 4(x - 1).

Soit P₁ un point courant de la droite (AB) de coordonnées (t,0).

D'où l'équation du cercle (Γ_1) de centre P_1 et de rayon $P_1C: x^2 + y^2 - 2tx + 4(t-5) = 0$

Les coordonnées de Q₁ et de R₁ à l'intersection de ce cercle et des droites (AC) et (BC) sont alors.

$$Q_1: x = 2(t-5) / 5$$
 et $y = 4(t-5) / 5$ et $R_1: x = 2(t-1) / 7$ et $y = 4(t-19) / 17$

On en déduit les coordonnées du milieu M_1 de Q_1R_1 : 2(11t-45) / 85 et 18(3t-20) / 85.

Le lieu de M_1 est alors la droite d'équation Y = 9(3X - 2)/11 (voir ci-contre la droite en pointillés bleus) La construction de cette droite se fait aisément en considérant les positions de Q_1 et de R_1 quand P_1 est en A puis en B. Quand P_1 est en A, on trace C_1 diamétralement opposé à C sur le cercle (Γ_1). La droite(CB) coupe le cercle (Γ_1) en un point P_1 et le point P_1 est le milieu de P_1 . On opère de la même manière quand P_1 est en

Des calculs du même type sont effectués pour déterminer le lieu du point M_2 milieu des points Q_2 et R_2 à l'intersection des droites (AB) et (BC) avec le cercle (Γ_2) de centre P_2 situé sur la droite (AC).On obtient la **droite d'équation Y = 2(9X – 1)/13 (voir ci-contre en pointillés rouges)** que l'on construit en déterminant les positions de M_2 quand P_2 est en A puis en C.

Même conclusion pour le lieu du point M_3 milieu des points Q_3 et R_3 à l'intersection des droites (AB) et (AC) avec le cercle (Γ_3) de centre P_3 situé sur la droite (BC). On obtient **la droite d'équation Y** = (9X - 8)/7 (voir ci-contre en pointillés verts) que l'on construit en déterminant les positions de M_3 quand P_3 est en B puis en C.