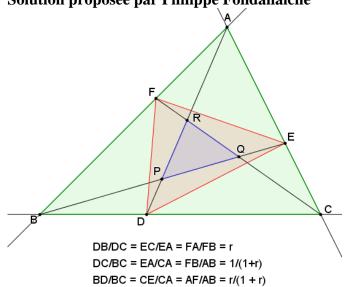
Problema n°874

3609. Sea r un número real y D, E y F puntos sobre los lados BC, CA y AB de un triángulo ABC tal que BD/DC=CE/EA=AF/FB=r. Las cevianas AD, BE, y CF limitan un triángulo PQR cuya área es [PQR] . Hallar el valor de r para el cual la relación de áreas [DEF]/[PQR] es 4.

Ligouras, P. (2011): Crux Mathematicorum (37-1). Pg. 50

Solution proposée par Philippe Fondanaiche



1^{er} cas: les points D,E et F sont intérieurs aux côtés BC,CA et AB.

On désigne par [XYZ] l'aire du triangle XYZ et on pose [ABC] = S

On a la relation [DEF] = S - [BDF] - [CED] - [AFE]

Or $[BDF] = [BCF] * BD/BC = [BCF] * r/(1 + r) = S*FB/AB*r/(1 + r) = S*r/(1 + r)^2$

De la même manière, on obtient [CED] = [AFE] = $S*r/(1 + r)^2$

D'où [DEF] = $S(1 - 3r/(1+r)^2) = (1 - r - r^2)S/(1 + r)^2$

Par ailleurs, d'après le théorème de Menelaüs, on a DB/DC*RC/RF*AF/AB = 1

D'où RC/RF = $(1 + r)/r^2$ et RF/CF = $r^2/(1 + r + r^2)$ = PD/AD = QE/BE

D'où [BDP] = [CEQ] = [AFR] = r^2 [ACF]/(1 + r + r^2) avec [ACF] = rS/(1 + r)

soit [BDP] = [CEQ] = [AFR] = $r^3S/(1 + r + r^2)*(1 + r)$

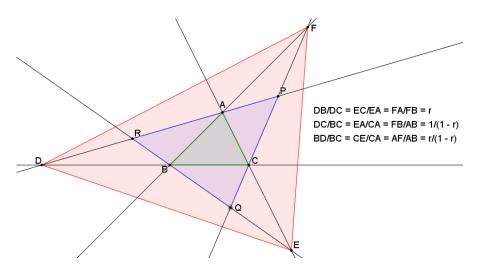
On en déduit [PQR] = S - ([ABD] + [BCE] + [CAF]) + [BDP] + [CEQ] + [AFR]

ce qui donne [PQR] = $S - 3[ABD] + 3[AFR] = S - 3rS/(1 + r) + 3r^3S/(1 + r + r^2)*(1 + r)$

Après développement et simplification, il en résulte [DEF]/[PQR] = $(1 + r^2 + r^4)/(1 - 2r^2 + r^4)$

Si [DEF]/[PQR] = 4, alors $r^4 - 3r^2 + 1 = 0 ==> 2$ solutions:

$$\mathbf{r_1} = \sqrt{\frac{3+\sqrt{5}}{2}} = \frac{1+\sqrt{5}}{2}$$
 (nombre d'or) et $\mathbf{r_2} = \sqrt{\frac{3-\sqrt{5}}{2}} = \frac{-1+\sqrt{5}}{2}$ (inverse du nombre d'or)



2ème cas: les points D,E et F sont extérieurs aux côtés BC,CA et AB.

Deux configurations sont à considérer : les extrémités du côté BC et le point D sont dans l'ordre $\{D,B,C\}$ ou bien dans l'ordre $\{B,C,D\}$

Dans chacune d'elles les calculs des aires des triangles DEF et PQR sont exactement les mêmes que ceux du premier cas et on aboutit aux résultats suivants:

1) ordre $\{D,B,C\}$ qui correspond à r=DB/DC<1. Le ratio [DEF]/[PQR]=4 est

obtenu pour r =
$$\sqrt{\frac{3-\sqrt{5}}{2}} = \frac{-1+\sqrt{5}}{2}$$

2) ordre $\{B,C,D\}$ qui correspond à r=DB/DC>1 et revient à intervertir les points B

et C. Le ratio [DEF]/[PQR] = 4 est obtenu pour
$$r = \sqrt{\frac{3+\sqrt{5}}{2}} = \frac{1+\sqrt{5}}{2}$$