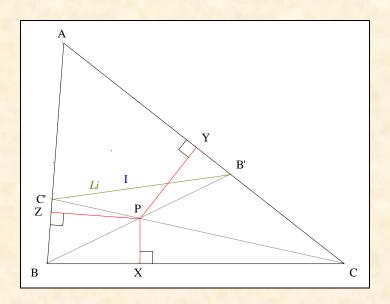
SIMPLEMENT BEAU



LIEN ENTRE DEUX RELATIONS

Un lien n'est pas un contact

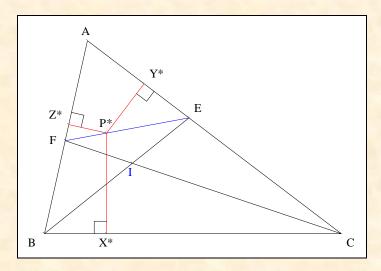
Jean - Louis AYME 1

Résumé.

Cette note met en valeur un lien qui unit deux relations apparemment étrangères. Les figures sont toutes en position générale et tous les théorèmes cités peuvent tous être démontrés synthétiquement.

Abstract.

This note highlights a link that unites two apparently foreign relations. The figures are all in general position and all cited theorems can all be proved synthetically.


Sommaire	
A. Une relation	2
B. Le lien particulier d'Alexey Zaslavsky	4
C. Une autre relation	5

St-Denis, Île de la Réunion (Océan Indien, France), le 30/05/2018 ; jeanlouisayme@yahoo.fr

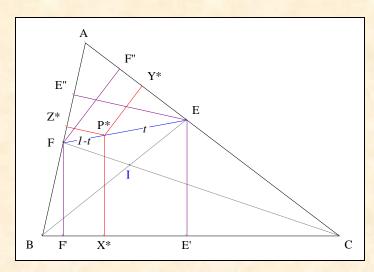
A. UNE RELATION

VISION

Figure:

Traits: ABC un triangle,

I le centre de ABC,


DEF le triangle I-cévien de ABC,

P* un point de [EF]

et X*Y*Z* le triangle P*-pédal de ABC.

Donné : $P*X* = P*Y* + P*Z*.^2$

VISUALISATION

- Notons E', F' les pieds des perpendiculaires à (BC) issues resp. de E, F les pieds des perpendiculaires à (AB), (AC) issues resp. de E, F.
- Posons EF = 1 et P*E = t; en conséquence, P*F = 1 t.

Geometry, AoPS du 27/06/2015; http://www.artofproblemsolving.com/community/q2h1107371p5023110

• Par culture géométrique appliquée

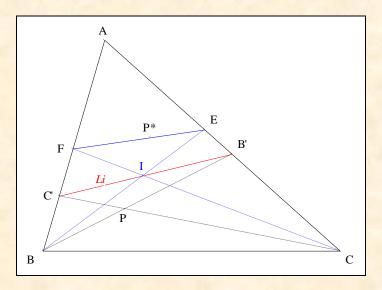
(1) au trapèze EFF'E', P*X* = t.FF' + (1-t).EE'

(2) au triangle EFF", P*Y* = t.FF" i.e. t.FF

(3) au triangle EFE", P*Z* = (1 - t).EE" i.e. (1 - t).EE'.

• Conclusion: par substitution, P*X* = P*Y* + P*Z*.

Scolie: le cas particulier où P* est le milieu de [EF] a été proposé en 2015. 3


Goooooood, AoPS du 20/01/2015; http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=621755

B. LE LIEN PARTICULIER

D'ALEXEY A. ZASLAVSKY

VISION

Figure:

Traits: ABC un triangle,

I le centre de ABC,

Li une transversale de ABC issue de I,

B', C' les points d'intersection de *Li* resp. avec (AC), (AB),

P le point d'intersection de (BB') et (CC'),

E, F les pieds resp. de (BI), (CI)

et P* l'isogonal de P relativement à ABC.

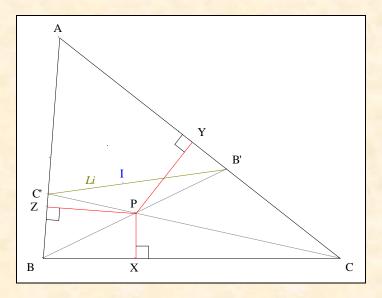
Donné: P* est sur (EF). ⁴

Commentaire: pour le cas général proposé par Alexey Zaslavsky 5,

une preuve synthétique peut être vue sur le site de l'auteur. 6

Collinear, AoPS du 16/04/2011; http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=402242

Zaslavsky A., Excircle and circumcircle, Message *Hyacinthos* # **9145** du 28/01/2004;


https://groups.yahoo.com/neo/groups/Hyacinthos/conversations/messages/9145

Ayme J.-L., Deux couples de points isogonaux, G.G.G. vol. 8; http://jl.ayme.pagesperso-orange.fr/Docs/Deux%20couples%20de%20points%20isogonaux.pdf

C. LE PROBLÈME

VISION

Figure:

Traits: ABC un triangle,

I le centre de ABC,

Li une transversale de ABC issue de I,

B', C' les points d'intersection de Li resp. avec (AC), (AB),

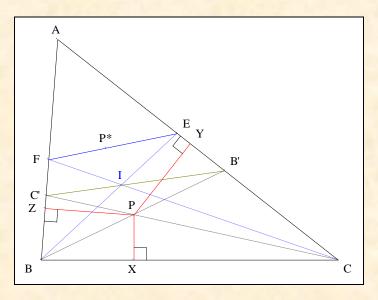
P le point d'intersection de (BB') et (CC'),

et XYZ le triangle P-pédal de ABC.

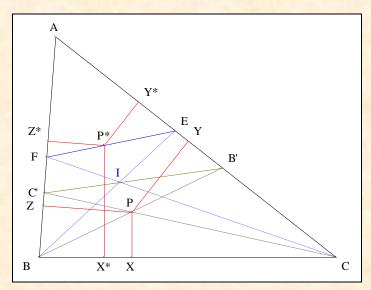
Donné : 1/PX = 1/PY + 1/PZ.

Commentaire : une preuve métrique en a été donnée par F. Damián Aranda Ballesteros *, "profesor del IES Blas Infante de Córdoba, España".

VISUALISATION


⁷ 1/PX = 1/PY + 1/PZ, AoPS du 27/08/2005; https://artofproblemsolving.com/community/q1h49832p315981 José Manuel Arranz San José, profesor de Educación Secundaria de Ponferrada (León). Oposiciones Secundaria (2005) Baleares, Problema 272;

http://personal.us.es/rbarroso/rbarroso/trianguloscabri/sol/sol272dam.htm http://personal.us.es/rbarroso/rbarroso/trianguloscabri/pro272.htm


http://personal.us.es/rbarroso/rbarroso/trianguloscabri/sol/sol272garcap/sol272garcap.htm

A relation, AoPS du 17/09/2017; https://artofproblemsolving.com/community/c6h1514430_a_relation

http://personal.us.es/rbarroso/rbarroso/trianguloscabri/sol/sol272dam.htm

- Notons E, F les pieds resp. de (BI), (CI) et P* l'isogonal de P relativement à ABC.
- D'après **B.** Une particularisation, P* est (EF).

- Notons X*Y*Z* le triangle P*-pédal de ABC.
- D'après A. Une relation, P*X* = P*Y* + P*Z*.
- Une chasse de rapports
 - * les quadrilatères AY*P*Z* et AZPY étant semblables, P*Y*/PZ = P*Z*/PY par "Produit en croix", P*Y*.PY = P*Z*.PZ par une autre écriture, P*Y*/PY = P*Z*/PY = P*Z*/PY.

 * Les quadrilatères P*Z* et P*Z* et
 - par "Produit en croix", P*Z*.PZ = P*X*.PX par une autre écriture, P*Z*/1/PZ = P*X*/1/PX.

• Conclusion partielle: P*X*/1/PX = P*Y*/1/PY = P*Z*/1/PZ =.

• D'après "Règles sur les proportions" et résultat de \mathbf{A} ., $(P^*X^*/1/PX) = (P^*Y^* + P^*Z^*)/(1/PY + 1/PZ) = P^*X^*/(1/PY + 1/PZ)$.

• Conclusion: 1/PX = 1/PY + 1/PZ.