Problema 876

Sobre los lados \overline{AB} i \overline{AC} del triángulo \overline{ABC} consideremos dos puntos variables M y N, respectivamente.

Las circunferencias de diámetros \overline{BN} i \overline{CM} se cortan en los puntos P y Q. Demostrar que las rectas PQ pasan por un punto fijo, independiente de la elección de M y N.

Chiriac, L. Competitive Geometry. Princenton.

Solución de Ricard Peiró.

La circunferencia de diámetro $\overline{\text{CM}}$ corta el lado $\overline{\text{AB}}$ en el punto K.

 \angle CKM = 90°, entonces, $\overline{\text{CK}}$ es altura del triángulo $\overset{\triangle}{\text{ABC}}$. La circunferencia de diámetro $\overline{\text{BN}}$ corta el lado $\overline{\text{AC}}$ en el punto L.

 \angle BLN = 90°, entonces, \overline{BL} es altura del triángulo $\stackrel{\triangle}{ABC}$

.

La intersección de las rectas \overline{CK} y \overline{BL} es el ortocentro H del triángulo \overrightarrow{ABC} .

Veamos que H pertenece a la recta PQ eje radical de las dos circunferencias: El ortocentro del triángulo cumple que:

$$\overline{AH} \cdot \overline{HK} = \overline{BH} \cdot \overline{HL}$$
.

Entonces, H tiene la misma potencia respecto de las dos circunferencias, entonces, H pertenece al eje radical de ambas circunferencias.

Entonces, H es el punto fijo.

