Problema 876.

3.- Problemas propuestos.

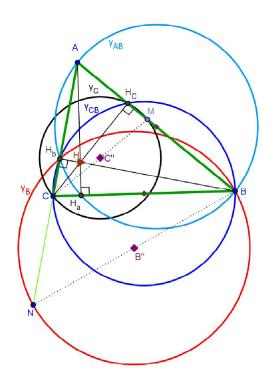
Problema 1. Sobre los lados AB y AC de un triángulo ABC consideramos dos puntos variables M y N respectivamente.

Las circunferencias de diámetros BN y CM se cortan en los puntos P y Q.

Demostrar que las rectas PQ pasan por un punto fijo, independientemente de la elección de M y N.

Chiriac, L. Competitive Geometry. Princenton.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



La recta PQ es el eje radical de las circunferencias. Vamos a ver cómo es esta recta en algunos casos particulares. Sean γ_B, γ_C dos circunferencias de diámetros BN y CM respectivamente. Es evidente que para cualquier $F{\in}AC$, γ_B pasa por el pie de la altura h_b y para cualquier $E{\in}AB$, γ_C pasa por el de la altura h_c . Las circunferencias con diámetros los lados del triángulo son casos particulares de este problema. Si es γ_{CB} la de diámetro CB, y γ_{AB} la de diámetro AB, éstas pasan ambas, por el pie de h_b . Por tanto h_b es el eje radical de γ_B y γ_{AB} ; h_c es el eje radical de γ_C y γ_{CB} .

A su vez el eje radical de γ_{AB} y γ_{CB} es la altura h_b .

Eje rad
$$(\gamma_B; \gamma_{AB}) = h_b = \text{Eje rad } (\gamma_{AB}; \gamma_{CB})$$

Eje radical (
$$\gamma_C; \gamma_{CB}$$
) = h_c .

En conclusión el ortocentro H es el centro radical de todas esas circunferencias por el que pasan todas las rectas PQ del problema.