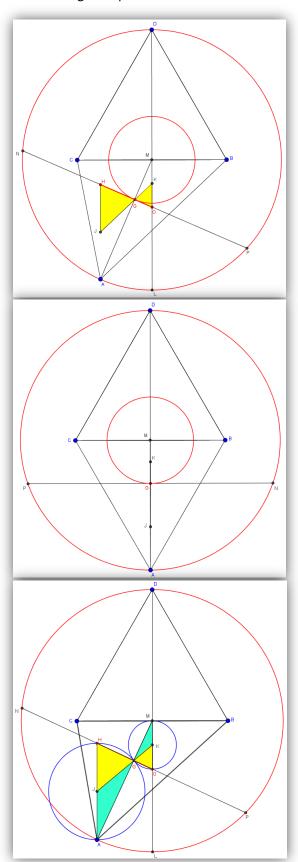
Problema 877.-

Sea BCD un triángulo equilátero. Sea M el punto medio de BC. Tracemos AM = MD. Sean G, O, H el baricentro, circuncentro y ortocentro del triángulo ABC. Demostrar que las circunferencias de diámetros AH y MO son tangentes en G.

Suppa, E. (2018): Comunicación personal.

Solución de Florentino Damián Aranda Ballesteros, profesor del IES Blas Infante de Córdoba.

Sea el triángulo equilátero ABC de lado I. Observamos los siguientes hechos de interés:



H1.- A recorre el lugar geométrico de los puntos del plano cuya suma de distancias a los puntos B y C es constante. En concreto $AC^2 + AB^2 = DC^2 + DB^2 = 2l^2$. Este lugar no es otro que C_1 , la circunferencia de centro el punto M, y de radio MD. Llamamos a esta

H2.- El punto G, baricentro del triángulo variable ABC recorre el lugar geométrico de los puntos del plano que está a una distancia de M igual a $\frac{1}{3}AM$. Por tanto, G está situado sobre C_2 , la circunferencia también de centro el punto M y de radio $\frac{1}{3}AM$. Verifica igualmente este punto G que la suma de distancias a los puntos B y C también es constante.

En concreto, $GC^2 + GB^2 = \frac{2}{3}l^2$.

H3.- Al estar alineados los puntos H,G,O determinan una cuerda NP en la circunferencia C_1 . Esta cuerda contacta con la circunferencia C_2 en el punto G. Para saber la posición relativa entre la cuerda NP y esta circunferencia, podemos observar lo que sucede en una posición destacada. Sea esta en la que A es el punto diametralmente opuesto al vértice D. Observamos que, por la simetría de la figura, la cuerda NP habrá de ser perpendicular al diámetro AD y por tanto, tangente a la circunferencia C_2 .

H4.- En definitiva, AM y NP son perpendiculares en G. Por tanto, las circunferencias de diámetros $AH\ y\ MO$ serán tangentes en G.