Pr. Cabri 878

Enunciado

En un triángulo ABC, tenemos: $\angle BAC=60^{\circ}$, M el punto medio de BC, O circuncentro, H ortocentro y N centro de los nueve puntos de ABC. Demostrar que

1.-La circunferencia de centro M y radio MO, y la circunferencia de diámetro AH son tangentes en $\rm N.$

2.-AH=2MO.

Suppa, E. (2018).

Solución de César Beade Franco

Consideremos el triángulo de vértices A(0,0), B(1,0) y C(a, \sqrt{a}), donde A=60°. Los otros puntos son M($\frac{1+a}{2}$, $\frac{\sqrt{3}}{2}$), O($\frac{1}{2}$, $\frac{-1+4a}{2\sqrt{3}}$), H(a, $-\frac{-1+a}{\sqrt{3}}$) y N($\frac{1}{4}$ (1 + 2a), $\frac{1+2a}{4\sqrt{3}}$).

Resulta que $|AH| = 2|MO| = \frac{\sqrt{1-2\,a+4\,a^2}}{\sqrt{3}} = 2|NM|$. Además, si P es el punto medio de AH, N equidista de M y P y es, por tanto el punto de tangencia de las circunferencias anteriores. Es más, los puntos P, H, M y O son los vértices de un peralelogramo centrado en N.

