Problema 881

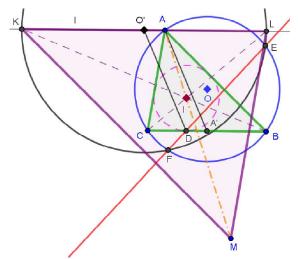
B.5954. Una recta l contiene al vértice A de un triángulo ABC y es paralela a BC. Sean K y L los puntos de intersección de l con las bisectrices internas de los ángulos ABC y ACB, respectivamente. El círculo inscrito del triángulo ABC es tangente a BC en D. Demostrar que el círculo circunscrito al triángulo ABC y el círculo de Thales del segmento KL (el círculo de diámetro KL) intersecan en dos puntos que son colineales con D.

Komal (2018). Abril.

Solución de Saturnino Campo Ruiz, profesor de Matemáticas jubilado, de Salamanca.

Sean O' el punto medio de KL y A' el punto medio de BC; O e I el circuncentro y el incentro de ABC respectivamente y s su semiperímetro. Supongamos c > b.

La circunferencia de diámetro KL y la circunscrita se cortan en los puntos E y F. Tenemos que demostrar que están alineados con D o, lo que es equivalente, que D pertenece al eje radical de estas circunferencias.



La homotecia de centro I y razón $\frac{h-r}{r}$, donde h es la altura de ABC desde A y r el radio de su circunferencia inscrita, transforma el triángulo ILK en el ICB.

El segmento KL, homotético del BC tiene longitud $a'=a\cdot\frac{h-r}{r}=\frac{ah-ar}{r}=\frac{2sr-ar}{r}=b+c$. Por tanto la razón de la homotecia es $k=\frac{b+c}{a}$. Esta homotecia también transforma el triángulo

Por tanto la razón de la homotecia es $k=\frac{b+c}{a}$. Esta homotecia también transforma el triángulo ABC en el MKL. MA es una bisectriz de este triángulo. Si aplicamos aquí el teorema de la bisectriz tendremos $LA=\frac{LM\cdot KL}{MK+ML}=\frac{bk\cdot (b+c)}{(c+b)\cdot k}=b$ y sin más, AK=c.

Vamos a calcular la potencia de D respecto de cada circunferencia. El punto de contacto de la circunferencia inscrita con el lado BC divide a este segmento en otros dos de longitudes s-b y s-c respectivamente. Podemos poner pues Pot(D;(O)) = -(s-b)(s-c).

y s-c respectivamente. Podemos poner pues $\operatorname{Pot}(D;(O)) = -(s-b)(s-c)$. La potencia respecto de (KL) es igual $\operatorname{Pot}(D;(KL)) = DO'^2 - \left(\frac{KL}{2}\right)^2$.

En la figura **se ve** que la distancia de D al centro es igual a la longitud de la mediana de A del triángulo ABC. La demostración es inmediata: basta con ver que los segmentos AO' y A'D son iguales. $AO' = \frac{b+c}{2} - b = \frac{c-b}{2}$; $A'D = s - b - \frac{a}{2} = \frac{c-b}{2}$. De todo esto

Pot(D; (KL)) =
$$DO'^2 - O'L^2 = \frac{2b^2 + 2c^2 - a^2}{4} - \frac{(b+c)^2}{4} = \frac{b^2 + c^2 - 2bc - a^2}{4}$$

= $\frac{(b-c)^2 - a^2}{4} = \frac{(b-c-a)(b-c+a)}{4} = -(s-b)(s-c)$.