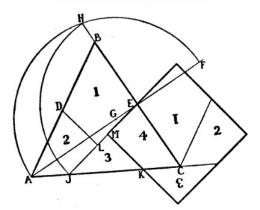
Quincena del 16 al 30 de Junio de 2018.

Problema 882

Disección de Dudeney

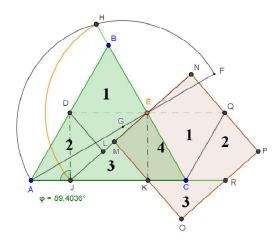
26.—The Haberdasher's Puzzle.



La ilustración muestra cómo la pieza triangular de tela se puede cortar en cuatro piezas que encajarán entre sí y formarán un cuadrado perfecto. D y E son los puntos medios de AB y BC respectivamente; F, alineado con AE tal que EF igual a EB; G es el punto medio de AF y la circunferencia C(G;GF) describe el arco AHF; EB prolongado da H, y EH es la longitud del lado del cuadrado requerido; desde E con distancia EH, se describe el arco HJ, y se toma JK igual a BE; ahora, desde los puntos D y K, se trazan las perpendiculares a EJ en L y M. Si has hecho esto con precisión, ahora tendrás las instrucciones requeridas para los cortes. Si el lado del

triángulo equilátero es 1, ¿Qué medidas tienen las cuatro piezas del puzle?

Solución de Saturnino Campo Ruiz, profesor de Matemáticas jubilado, de Salamanca.



Si el lado del triángulo ABC es 1, tenemos $BD=BE=DA=CE=JK=\frac{1}{2}=EF; AE=\frac{\sqrt{3}}{2}; EH$ es la altura del triángulo rectángulo AHF. Por tanto $EH^2=AE\cdot EF=\frac{\sqrt{3}}{4}$. Ese valor es el área del cuadrado y también la del triángulo.

Los triángulos rectángulos DEL y KJM son congruentes: tienen sus ángulos iguales y también la hipotenusa. De esta relación se tienen DL = KM y EL = JM. Dado que JE es el lado

MN del cuadrado también tenemos JM = EL = EN, (E es el punto medio de LN).

A partir de $JK = \frac{1}{2}$, la suma de las áreas de los triángulos de igual altura, DAJ y EKC es la cuarta parte del área total del triángulo, por eso el área del paralelogramo DEKJ (no es un rectángulo) es la mitad de dicha área.

Tendremos pues: $2DL \cdot JE = [ABC] = JE^2$. De ahí se deduce que $DL = \frac{JE}{2} = KM$ y ahora podemos calcular EL aplicando el teorema de Pitágoras: $EL^2 = DE^2 - DL^2 = \frac{\sqrt{4-\sqrt{3}}}{4}$.

El teorema del coseno aplicado al triángulo JEC, nos permite calcular x=JC. Es la solución positiva de la ecuación $4x^2-2x-(\sqrt{3}-1)=0$. Resolviendo $JC=\frac{\sqrt{4\sqrt{3}-3}+1}{4}$.

A partir de este se calculan
$$KC = JC - \frac{1}{2} = \frac{\sqrt{4\sqrt{3} - 3} - 1}{4}$$
 y $AJ = 1 - JC = \frac{3 - \sqrt{4\sqrt{3} - 3}}{4}$.