Pr. Cabri 883

Enunciado

Sea un triángulo rectángulo ABC con hipotenusa BC y con círculo circunscrito (Γ) . Trazamos en BC el punto D, simétrico de C respecto a H, pie de la altura de A. Trazamos $(\Gamma 1)$, círculo de diámetro BD y (Δ) , perpendicular a la recta BC por D. Q1. Probar que cualquiera que sea la posición de H en BC, se puede construir con regla y compás un punto P sobre (Δ) que es centro de un círculo (γ) tangente al círculo $(\Gamma 1)$ y a la recta AD.

Q2. Demostrar que el circulo (γ) es tangente al círculo (Γ)

Q3. Cuando H recorre la hipotenusa BC, hallar el lugar del punto P.

Fondanaiche, P. (2018) A partir de un sangaku.

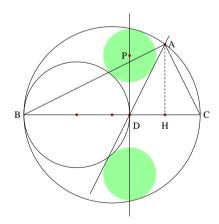
Solución de César Beade Franco

Q1 y Q2. Consideremos los puntos $A(a, \sqrt{4+a^2})$, B(-2,0) y C(2,0). Entonces obtenemos H(a,0) y D(2a-2).

En estas condiciones la circunferencia de diámetro BD tiene como centro Q(a-2) y como radio a.

El punto P situado sobre la vertical de d será P(2a-2,p).

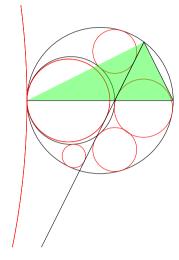
Para calcular P consideramos que la distancia de P a la recta AD es la misma que su distancia a la circunferencia $\Gamma 1$ y esta es igual a la distancia PQ menos el radio r1 de $\Gamma 1$.



La solución de la ecuación d(P,r(AB))=d(P,Q)-r1 nos proporciona los puntos simétricos P(2a-2,± $\frac{4 \text{ a} \sqrt{2-a}}{2+a}$). El radio de γ resulta ser $r=\frac{2 (2-a) \text{ a}}{2+a}$.

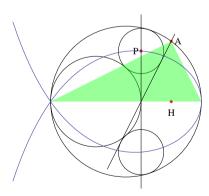
Comprobamos que γ es también tangente a Γ (de centro O(0,0) y radio 2). Para ello vemos que D(P,O)+r=2, lo que efectivamente sucede.

Vemos que estamos ante un tipo de problema de Apolonio (caso RCC). Se trata de encontrar circunferencias tangentes a otras dos y a una recta. Si no hubiera restricciones habría aquí 6 soluciones.



Existen varios métodos para dibujar este problema con regla y compás (Gergonne, inversión,..). Se tratan detalladamente en el libro de J.M. Pedret "Los problemas de contacto de Apolonio".

Q3. Podemos considerar las coordenadas de P(2a-2, $\frac{4 \text{ a} \sqrt{2-a}}{2+a}$) como las ecuaciones paramétricas del lugar buscado. Si eliminamos el parámetro a (Mathematica) obtenemos la cúbica 8 x³ + x² (16 + y²) + x (-32 + 12 y²) = 64 - 36 y²



Si cambiamos P de cuadrante obtenemos otra cúbica simétrica.