Problema 883

Sea un triángulo rectángulo ABC con hipotenusa BC y con círculo circunscrito (Γ) .

Trazamos en BC el punto D, simétrico de C respecto a H, pie de la altura de A.

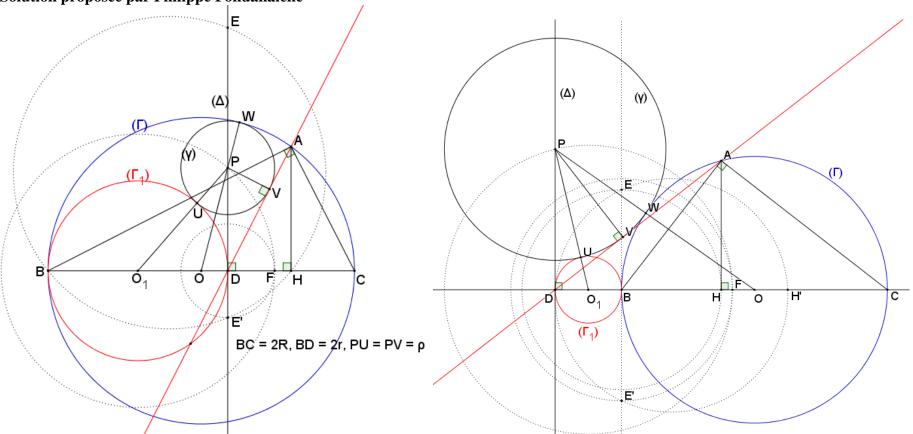
Trazamos (Γ 1), círculo de diámetro BD y (Δ), perpendicular a la recta BC por D.

 Q_1 Probar que cualquiera que sea la posición de H en BC, se puede construir con regla y compás un punto P sobre (Δ) que es centro de un círculo (γ) tangente al círculo (Γ 1) y a la recta AD.

 Q_2 Demostrar que el circulo (γ) es tangente al círculo (Γ)

Q₃ Cuando H recorre la hipotenusa BC, hallar el lugar del punto P

Solution proposée par Philippe Fondanaiche



Comme le font apparaître les deux figures ci-dessus, lorsque le point H est situé entre O et C, le cercle (Γ_1) est tangent intérieurement au cercle (Γ) et lorsque ce point est situé entre O et B, le cercle (Γ_1) est tangent extérieurement au cercle (Γ).

Considérons un repère orthonormé Oxy dont l'origine O est le centre du cercle (Γ) .

Par convention, on prend $OH \ge 0$ quand H est situé entre O et C et r < 0 quand H est situé entre B et O.

Soient O et O₁ les centres des cercles (Γ) et (Γ ₁) de diamètres respectifs BC = 2R et BD = 2r.

On a les relations : DC = 2(R - r), DH = HC = R - r, BH = R + r, OH = r et OD = 2r - R.

$\mathbf{Q}_{\mathbf{1}}$

Soit ρ le rayon du cercle (γ) tangent en U au cercle (Γ_1) et en V à la droite AD.On a PU = PV = ρ

Dans le triangle rectangle ABC, on a la relation $AH^2 = BH.HC = R^2 - r^2.D$ 'où $AD^2 = DH^2 + AH^2 = (R - r)^2 + R^2 - r^2 = 2R(R - r)$.

Par ailleurs $PD^2 = PO_1^2 - O_1D^2 = (r + \rho)^2 - r^2 = \rho(\rho + 2r)$.

Comme $\angle PDV = \angle DAH$, les triangles rectangles PDV et DAH sont semblables. Il en résulte que PD/PV = AD/DH ou encore PD²/ PV² = AD²/ DH². D'où l'équation $(\rho + 2r)/\rho = 2R/(R - r)$ qui donne $\rho = 2r(R - r)/(R + r)$.

D'où la construction du point P à la règle et au compas dans la première figure de gauche: au numérateur de la fraction, 2r(R-r) est égal au produit DB.DH et au dénominateur R+r représente le segment BH.On porte sur (Δ) le point E tel que DE=BH et on trace (en pointillés) le cercle circonscrit au triangle BHE qui coupe la droite (Δ) en un deuxième point E' tel que DE'.DE=DB.DH. D'où $DE'=\rho$. Le cercle de centre D et de rayon DE' coupe la droite BC au point F. Le cercle de centre O_1 de rayon $O_1F=r+\rho$ coupe (Δ) au point P recherché.

Dans la deuxième figure de droite, on trace H' symétrique de H par rapport à O de sorte que DH = BH' = (R - r) avec r < 0. Sur la perpendiculaire en B à la droite BC, on trace le point E tel que BE = BH = R + r puis le cercle circonscrit au triangle DEH' qui coupe cette perpendiculaire au point E' tel que $BE' = BD.BH'/BE = 2r(R - r)/(R + r) = \rho$. D'où le point F sur la droite BC tel que $BF = BE' = \rho$. Le cercle de centre O_1 et de rayon O_1F coupe la droite (Δ) au point P recherché.

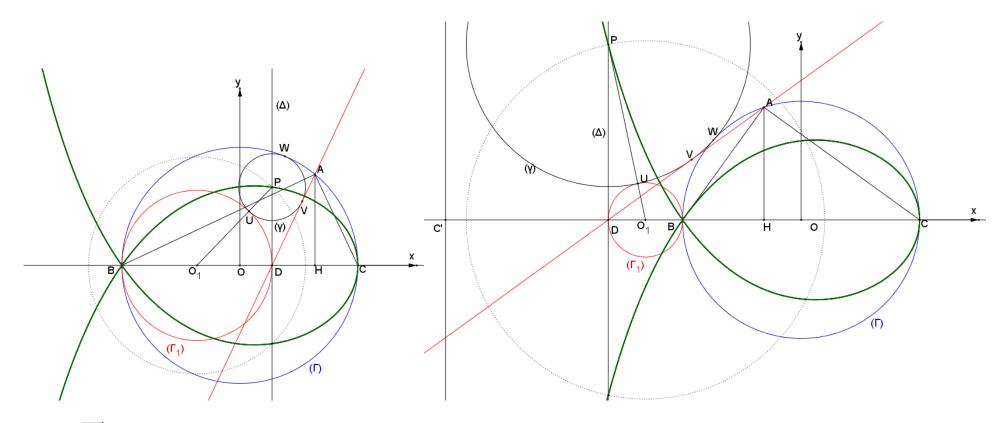
$\mathbf{Q}_{\mathbf{2}}$

On a la relation $PO^2 = PD^2 + OD^2 = \rho(\rho + 2r) + (2r - R)^2$. Il s'agit de démontrer que $PO = R - \rho$ soit $PO^2 = (R - \rho)^2 = \rho(\rho + 2r) + (2r - R)^2$. En développant les deux membres, les termes en R^2 et ρ^2 s'éliminent et il reste: $-2R\rho = 2r\rho + 4r^2 - 4Rr$ qui est équivalente à : $\rho = 2r(R - r)/(R + r)$.

\mathbf{Q}_3

On admet que lorsque H parcourt BC, le sommet A du triangle parcourt tout le cercle (Γ) .

On exprime les coordonnées (x,y) du point P dans un repère orthonormé Oxy avec O centre du cercle (Γ) .



On a $x = \overrightarrow{OD} = 2r - R \ge 0$ si $2r \ge R$ et < 0 si 2r < R.D'où 2r = R + x. y = PD avec $y^2 = PD^2 = \rho(\rho + 2r)$.

Comme $\rho = 2r(R-r)/(R+r)$, on obtient $\rho = (R^2-x^2)/(3R+x)$ puis $\rho + 2r = 4R(R+x)/(3R+x)$, soit $y^2 = 4R(R^2-x^2)(R+x)/(3R+x)^2$ Le lieu du point P est alors **une partie de la quartique** d'équation $(3R+x)^2y^2 - 4R(R+x)^2(R-x) = 0$ qui est définie pour $-3R \le x \le R$.

Sur les deux figures ci-dessus, c'est la courbe (en vert) qui passe par les points B et C, traverse l'axe des ordonnées Oy aux points d'ordonnées 2R/3 et -2R/3, est tangente en C au cercle (Γ) et admet pour asymptote la perpendiculaire à la droite BC d'équation x = -3R qui passe par le point C' symétrique de C par rapport à B.

La partie de la quartique intérieure au cercle (Γ) est obtenue quand H est sur le segment OC (figure de gauche) et l'autre partie est extérieure à (Γ) quand H est sur le segment OB (figure de droite).