Problema 885.-

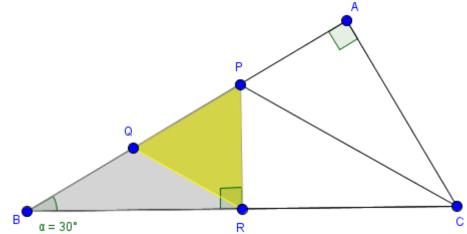
Problema 2 del Primer Nivel de la IX Olimpiada de Mayo del VIII Concurso de Primavera de Matemáticas.

El triángulo ABC es rectángulo en A y R es el punto medio de la hipotenusa BC. Sobre el cateto mayor AB se marca el punto P tal que CP=BP y sobre el segmento BP se marca el punto Q tal que el triángulo PQR es equilátero. Si el área del triángulo ABC es 27, calcula el área del triángulo PQR.

VIII Concurso de Primavera de Matemáticas (2004) (p. 97)

Solución de Florentino Damián Aranda Ballesteros, Córdoba (España).

A la vista del enunciado, deducimos que el triángulo rectángulo ABC no puede ser otro que el de ángulos $30^{\circ} y 60^{\circ}$. Esto es así, ya que por la semejanza de los triángulos rectángulos BRP y BAC, y por el hecho que indica que



el ángulo en P del triángulo PAR ha de ser 60° , necesariamente entonces el triángulo ABC será el de ángulos 30° y 60° .

De este modo, AC = RB = RCy la razón de semejanza entre los triángulos ABC y RPB será

$$k = \frac{AC}{\sqrt{3} \cdot OB} = \frac{1}{\sqrt{3}}.$$

Por tanto, la razón entre las áreas de ambos triángulos semejantes será igual a $k^2 = \frac{1}{2}$.

En definitiva, el área del triángulo RPB será igual a $\frac{27}{3} = 9 u^2$.

Como quiera que QP=RP, entonces PQ=QB y el área del triángulo BQR será la mitad del área del triángulo RPB. Así, por fin, el área del triángulo PQR será igual a la otra mitad del área del triángulo BPR.

$$[PQR] = 4'5 u^2.$$