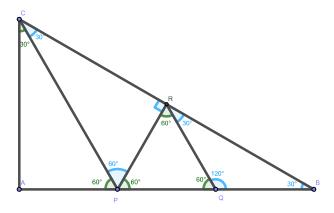
Problema 1 (Problema 2 del Primer Nivel de la IX Olimpiada de Mayo del VIII Concurso de Primavera de Matema El triángulo ABC es rectángulo en A y R es el punto medio de la hipotenusa BC. Sobre el cateto mayor AB se marca el punto P tal que CP = BP y sobre el segmento BP se marca el punto Q tal que el triángulo PRQ es equilátero. Si el área del triángulo ABC es 27 calcula el área del triángulo PQR

Solución



Por ser P un punto de \overline{AB} tal que $\overline{CP} = \overline{BP}$ entoncesP pertenece a la mediatriz de la hipotenusa \overline{CB} . Como R es el punto medio de \overline{BC} sabemos que $\widehat{CRP} = 90^{\circ}$

Al ser Q un punto de AB de manera que PQR sea un triángulo equilátero deducimos que $\widehat{BQR}=120^o, \widehat{QRB}=30^o, \widehat{RBQ}=30^o$

Lo que nos permite afirmar que el \triangle RQB es isósceles siendo RQ = QB.

Vamos pues a calcular el segmento RB en función de RQ

Aplicando el teorema de los senos al $\triangle RQB$

$$RB = \frac{RQ \sin 120^o}{\sin 30^o} = \frac{RQ \sin 60^o}{\sin 30^o} = RQ\sqrt{3}$$

La superficie del $\triangle PRB$ al ser rectángulo en R es

$$S_{\triangle PRB} = \frac{RB \cdot PR}{2} = \frac{\sqrt{3} \left(RQ\right)^2}{2}$$

Como el \triangle CPR simétrico con respecto al \triangle PRB los ángulos $\widehat{PCR}=30^o$ y $\widehat{RPC}=60^{\dot{o}}$. Lo que nos permite afirmar que el \triangle ACP también es simétrico de \triangle CPR

Por todo lo anteriormente expuesto y utilizando el hecho de que S=27 tenemos que

$$27 = S_{\triangle ABC} = 3S_{\triangle PRB} = \frac{3\sqrt{3} (RQ)^2}{2}$$

$$RQ^2 = \frac{18}{\sqrt{3}} = 6\sqrt{3}$$

$$RQ = \sqrt{6\sqrt{3}}$$

Como $\triangle PQR$ es equilátero su área es

$$S_{\triangle PQR} = \frac{RQ^2\sqrt{3}}{4} = \frac{6\sqrt{3}\sqrt{3}}{4} = \frac{9}{2}$$

Además las dimensiones del triángulo inicial ABC son

$$\begin{array}{rcl} AB & = & 3RQ = 3\sqrt{6\sqrt{3}} = 3\sqrt[4]{108} \\ \\ AC & = & RQ\sqrt{3} = \sqrt{3}\sqrt{6\sqrt{3}} = \sqrt[4]{972} \\ \\ CB & = & 2\sqrt{3}RQ = 2\sqrt{3}\sqrt{6\sqrt{3}} = 2\sqrt[4]{972} \end{array}$$

Juan José Isach Mayo Profesor de Matemáticas (Jubilado) Valencia