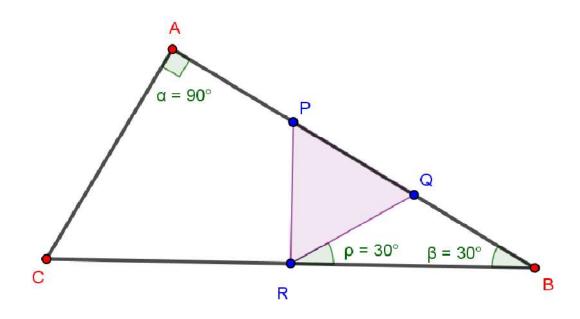
Problema 885.

Problema 2 del Primer Nivel de la IX Olimpiada de Mayo del VIII Concurso de Primavera de Matemáticas.

El triángulo ABC es rectángulo en A y R es el punto medio de la hipotenusa BC. Sobre el cateto mayor AB se marca el punto P tal que CP = BP y sobre el segmento BP se marca el punto Q tal que el triángulo PQR es equilátero. Si el área del triángulo ABC es 27, calcula el área del triángulo PQR.

VIII Concurso de Primavera de Matemáticas (2004) (p. 97)

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Para que se den las condiciones del enunciado el triángulo rectángulo ha de ser el de ángulos 30,60,90, y P está sobre la mediatriz de BC. Sus lados miden $\frac{a}{2}$, $\frac{\sqrt{3}a}{2}$ y a respectivamente. Tenemos así la siguiente situación:

Los triángulos PBR y CBA son semejantes, de ahí, $\frac{PR}{CA} = \frac{BR}{BA}, \frac{l}{a/2} = \frac{a/2}{\sqrt{3}a/2}$ de donde el lado del triángulo equilátero es $l = \frac{a\sqrt{3}}{6}$ y su área $\frac{a^2\sqrt{3}}{48}$. El área del triángulo rectángulo es $\frac{a^2\sqrt{3}}{8}$. Por tanto la del equilátero es 6 veces menor, esto es, $[PQR] = \frac{27}{6} = 4,5$.