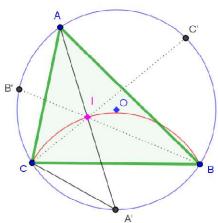
Propuesto por Florentino Damián Aranda Ballesteros

Problema 887.

Sean los puntos A', B', C' de la circunferencia circunscrita al triángulo ABC donde se intersecan las bisectrices interiores trazadas desde los vértices A, B, C respectivamente. Se verifica entonces la relación $A'I \cdot B'I \cdot C'I = 2R^2r$.

Aranda, F. D. (2018): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



El punto A' está en la mediatriz de BC. La circunferencia de centro A' que pasa por B y C, también pasa por I. Ya probamos en el problema 255 de esta revista (diciembre de 2005 y también n^2 337 de septiembre de 2006) que el arco de la misma que contiene a B y C, no exterior al triángulo, es el lugar geométrico de los incentros de los triángulos obtenidos variando A sobre la circunscrita (arco capaz del ángulo $90 + \frac{\alpha}{2}$).

El triángulo ACA' está inscrito en la esta circunferencia, por ello $A'I=A'C=2R\cdot sen \frac{\alpha}{2}$, y análogamente

para
$$B'I$$
, $C'I$. De ahí resulta $A'I \cdot B'I \cdot C'I = 8R^3 \cdot sen \frac{\alpha}{2} \cdot sen \frac{\beta}{2} \cdot sen \frac{\gamma}{2}$.

Calculemos ahora el producto de estos senos.

Llamando s al semiperímetro del triángulo, $s_a=s-a$ y R al radio de la circunferencia circunscrita, sabemos que se verifica

$$s_a r_a = sr = \text{Á} rea(ABC) = \Delta = \frac{abc}{4R} = \sqrt{ss_a s_b s_c}$$
 (E)

A partir de $sen \ \frac{\alpha}{2} = \sqrt{\frac{s_b s_c}{bc}}$ y expresiones análogas para los otros ángulos obtenemos, con la ayuda de (E),

$$sen \frac{\alpha}{2} \cdot sen \frac{\beta}{2} \cdot sen \frac{\gamma}{2} = \frac{r}{4R}$$

y con ello

$$A'I \cdot B'I \cdot C'I = 8R^3 \cdot sen \frac{\alpha}{2} \cdot sen \frac{\beta}{2} \cdot sen \frac{\gamma}{2} = 8R^3 \cdot \frac{r}{4R} = 2R^2r$$

como queríamos demostrar.