Problema n° 888

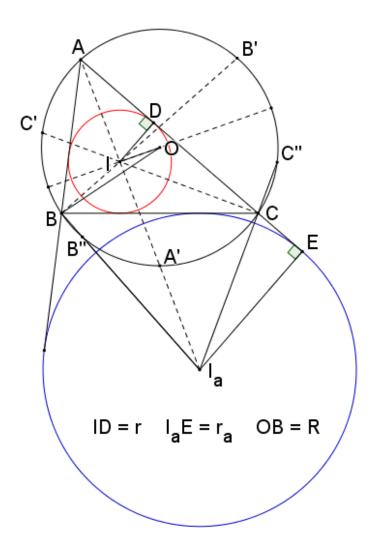
Propuesto por Florentino Damián Aranda Ballesteros

Sean los puntos A', B',' C" de la circunferencia circunscrita al triángulo ABC donde se intersecan la bisectriz interior trazada desde A y las bisectrices exteriores trazadas desde los vértices, B y C, respectivamente. Sean I_a , el punto de intersección de las bisectrices exteriores de loa ángulos B y C, y r_a el radio de la circunferencia exinscrita del ángulo A.

Se verifica entonces la relación A' I_a B" I_a C" I_a = 2 R² r_a

Aranda, F. D. (2018): Comunicación personal.

Solution proposée par Philippe Fondanaiche



D'après les résultats du problème n°884, on sait que IA.IB.IC = $4Rr^2$ et $I_aA.I_aB.I_aC = 4Rr_a^2$ Soient D et E les points de contact avec la droite AC du cercle inscrit et du cercle exinscrit dans le secteur de l'angle en A.

Les triangles rectangles AID et AI_aE sont semblables. D'où $I_aA/IA = I_aE/ID = r_a/r$.

Par ailleurs le triangle IBI_a est rectangle et admet II_a pour hypoténuse dont A' est le milieu.

Donc $I_aA' = IA'$ et $I_aA'.I_aA = IA'.IA. r_a/r$

D'après les résultats du problème $n^{\circ}887$, on a IA.IA' = 2Rr.

D'où $I_aA'.I_aA = 2Rr_a$ et $I_aB.I_aB'' = I_aC.I_aC'' = I_aA'.I_aA = 2Rr_a$

On en déduit : $I_a A'$. $I_a B''$. $I_a C'' = (2Rr_a\,)^3\,/(I_a A.I_a B.I_a C) = 2R^2 r_a$.

C.q.f.d.