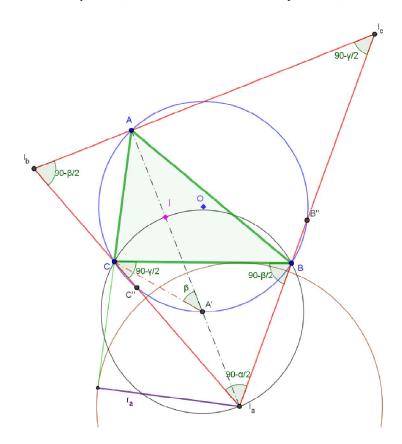
Problema 888.

Sean los puntos A', B'', C'' de la circunferencia circunscrita al triángulo ABC donde se intersecan la bisectriz interior trazada desde A y las bisectrices exteriores trazadas desde los vértices, B y C, respectivamente. Sean I_{α} el punto de intersección de las bisectrices exteriores de los ángulos B y C, y r_{α} , el radio de la circunferencia exinscrita del ángulo A.

Se verifica entonces la relación $A'I_a \cdot B''I_a \cdot C''I_a = 2 R^2 \cdot r_a$.

Aranda, F. D. (2018): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



Llamando s al semiperímetro del triángulo, $s_a=s-a$ y R al radio de la circunferencia circunscrita, sabemos que se verifican

$$s_a r_a = sr = \text{Á} rea(ABC) = \frac{abc}{4R} = \sqrt{ss_a s_b s_c}$$
 (E)
 $\tan \frac{\alpha}{2} = \frac{r}{s_a} = \frac{r_a}{s}$

A partir de $\cos\frac{\alpha}{2}=\sqrt{\frac{ss_a}{bc}}$ y con la ayuda de (E) obtenemos

$$\frac{s}{4R} = \cos\frac{\alpha}{2} \cdot \cos\frac{\beta}{2} \cdot \cos\frac{\gamma}{2} \qquad (2)$$

El triángulo formado por los excentros, de ángulos $90-\frac{\alpha}{2}$, $90-\frac{\beta}{2}$, $90-\frac{\gamma}{2}$, tiene como circunferencia de los nueve puntos a la circunscrita a ABC, por tanto, su circunferencia circunscrita tiene radio 2R y sus lados miden respectivamente

$$a' = 2(2R) \cdot \operatorname{sen}\left(90 - \frac{\alpha}{2}\right) = 4R \cdot \cos\frac{\alpha}{2}, b' = 4R \cdot \cos\frac{\beta}{2}, c' = 4R \cdot \cos\frac{\gamma}{2}$$

Por otra parte los puntos B", C" son puntos medios de dos lados de este triángulo.

Por tanto
$$B''I_a = \frac{b'}{2} = 2R \cdot \cos \frac{\beta}{2}$$
 y $C''I_a = \frac{c'}{2} = 2R \cdot \cos \frac{\gamma}{2}$

Como hemos visto en el problema 887, la circunferencia de centro A' que pasa por B y C, también pasa por I. En el triángulo rectángulo I_aAI_b el ángulo en I_a , complementario del ángulo en I_b , es $\frac{\beta}{2}$. Como $\sphericalangle AA'C = \beta$ resulta que $\sphericalangle A'CI_a = \sphericalangle CI_aA' = \frac{\beta}{2}$: el triángulo $A'CI_a$ es isósceles y la circunferencia de centro A' también pasa por I_a .

De todo esto concluimos que
$$A'C = A'I_a = 2R \cdot \sin \frac{\alpha}{2}$$

Ya podemos calcular la expresión del problema:

$$A'I_a \cdot B''I_a \cdot C''I_a = 8R^3 \cdot \sin\frac{\alpha}{2} \cdot \cos\frac{\beta}{2} \cdot \cos\frac{\gamma}{2} = 8R^3 \cdot \frac{s \cdot \sin\frac{\alpha}{2}}{4R \cdot \cos\frac{\alpha}{2}} = 2R^2s \cdot \tan\frac{\alpha}{2} = 2R^2s \cdot \frac{r_a}{s}$$
$$= 2R^2 \cdot r_a$$