Problema n°890

Sea un triángulo ABC.

La circunferencia inscrita de centro I es tangente a los lados BC, CA y AB en los puntos A₁, B₁ y C₁.

La circunferencia exinscrita del ángulo A es tangente al lado BC en el punto A₂.

Los puntos A', B', C', son los puntos medios de los lados BC, CA y AB.

AH es la altura del vértice A.

Se definen los siguientes nueve puntos M, N, P, Q, R, S, T, U, V:

La recta A₂I corta a AH en el punto M.

La recta A'I corta a la recta AA₁ En el punto N.

La recta A₁I corta a la mediana AA' en el punto P.

La perpendicular por I a la recta AA' corta en el punto Q a la paralela a BC por A.

La bisectriz del ángulo C del triángulo ABC corta a la recta A'C' en el punto R.

La bisectriz del ángulo B corta la circunferencia de diámetro BC en un segundo punto S.

La recta A₁B₁ corta a la recta A'C' en el punto T.

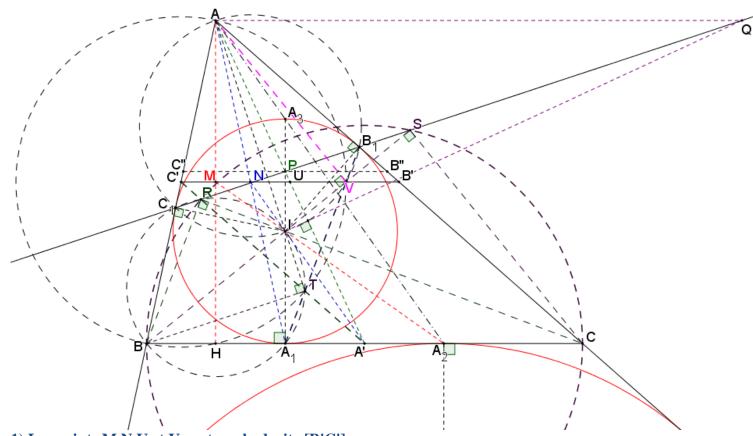
El punto U es el punto medio de la mediana AA'.

El punto V es la proyección del vértice A sobre la bisectriz del ángulo B.

Demostrar que:

- 1. Los puntos M, N, U y V están alineados.
- 2. Los puntos P, Q, R y S están alineados.
- 3. Los puntos B, I, R y T son concíclicos.
- 4. Los puntos B, C, R y S son concíclicos.
- 5. Los puntos A, B, V, T son concíclicos.

Solution



1) Les points M,N,U et V sont sur la droite [B'C']

Soit A₃ le point diamétralement opposé au point A₁ sur le cercle inscrit de centre I.

Lemme n°1: Les points A_1A_3 et A_2 sont alignés.

Soit l'homothétie de centre A qui transforme le cercle inscrit en le cercle exinscrit du secteur de l'angle en A.Le diamètre A_1A_3 devient le diamètre du cercle exinscrit perpendiculaire à BC au point A_2 , point de tangence de ce cercle avec le coté BC. Il en résulte que A_2 est le transformé de A_3 . C.q.f.d.

AH étant parallèle à A_1A_3 et I étant le milieu de A_1A_3 , d'après le théorème de Thalès, le point M à l'intersection de AH et de la droite $[A_2I]$ est au milieu de AH. M est donc sur la droite [B'C'] qui passe par les milieux B' et C' des côtés AB et AC

Lemme $n^{\bullet}2 : BA_1 = CA_2$.

Si on désigne par a,b,c les longueurs des côtés BC,CA et AB, on a la relation $BA_1 = CA_2 = (a - b + c)/2$ Il en découle que A' est le milieu de A_1A_2 . La droite [A'I] qui joint les milieux A' et I des côtés A_1A_2 et A_1A_3 dans le triangle $A_1A_2A_3$ est donc parallèle à la droite $[A_2A_3]$ et elle coupe la droite AA_1 en son milieu N. Ce point est donc sur la droite [B'C'].

Lemme n°3: La droite B'C' joignant les milieux des côtés AC et AB, la droite $[A_1B_1]$ joignant les points de contact du cercle inscrit avec les côtés AC et BC et la bissectrice [BI] de l'angle en B se rencontrent en un même point V.

Soit V' le point d'intersection de la bissectrice [BI] avec la droite [B'C']. Comme les angles $\angle AIB$ et $\angle V'B_1C$ sont supplémentaires avec $\angle AIB = 180^{\circ} - \angle BAC/2 - \angle ABC/2 = 90^{\circ} + \angle ACB/2$ et $\angle V'B_1C = \angle A_1B_1C = 90^{\circ} - \angle ACB/2$, les quatre points A,I,B₁ et V' sont sur un même cercle de diamètre AI. La droite AV' est donc perpendiculaire à la bissectrice de l'angle en I et V' est donc confondu avec le point V.

Par ailleurs le triangle ABV, rectangle en V, admet AB pour hypoténuse. Le triangle C'BV est isocèle de sommet C' et l'on a \angle C'BV = \angle C'VB. D'où \angle AC'V = \angle C'BV + \angle C'BV = 2 \angle C'BC = \angle ABC. C'V est parallèle à BC.

La parallèle à la droite [BC] passant par C' se confond avec la droite [B'C']. V est donc sur la droite [B'C'] Par construction U milieu de AA' est sur la droite [B'C']

Conclusion: les quatre points M,N,U et V sont alignés sur la droite [B'C'].

2) Les points P,Q,R,S sont sur la droite [B₁C₁]

Lemme n°4: Dans un triangle ABC dans lequel le cercle inscrit de centre I touche les côtés BC,CA et AB aux points A_1,B_1 et C_1 , les droites B_1C_1 et A_1I sont concourantes en un point P avec la médiane AA' du triangle ABC.

On désigne par P' le point d'intersection des droites $[A_1I]$ et $[B_1C_1]$. On mène la droite parallèle au côté BC passant par P' qui coupe AB et AC aux points C'' et B''.Les projections B_1 , C_1 et P' de I sur les côtés AB'',AC'' et B''C'' du triangle AB''C'' étant par construction alignées,d'après le théorème de Simson le point I appartient au cercle circonscrit au triangle AB''C''. Comme la droite AI est la bissectrice de l'angle en A de ce triangle, on a IB'' = IC''. D'où P'B'' = P'C''.Le point P' est donc sur la médiane AA' et il est confondu avec le point P. Conclusion: P est sur la droite $[B_1C_1]$

Lemme n°5: La perpendiculaire menée de I à la médiane AA' coupe la droite B_1C_1 en un point Q' tel que AQ' est parallèle à BC.

Le point P, situé à l'intersection des droites $[B_1C_1]$ et [AA'] qui sont respectivement perpendiculaires aux droites [AP] et [IQ'], est l'orthocentre du triangle AQ'I. La droite [IP] est donc perpendiculaire à la droite [AQ'].

Or d'après le lemme n°4, les droites $[B_1C_1]$, $[A_1I]$ et la médiane [AA'] sont concourantes au même point P tel que les points A_1 , I et P sont alignés. Les droites [AQ'] et [BC] étant perpendiculaires à la même droite $[A_1I]$ sont deux droites parallèles. Le point Q est donc confondu avec le point Q.

Conclusion: Q est sur la droite $[B_1C_1]$

Lemme n°6: La droite $[B_1C_1]$, la bissectrice [CI] de l'angle en C et la droite [A'C']joignant les milieux A' et C' des côtés BA et BC sont concourantes en un point R.

Ce lemme est la conséquence directe du lemme $n^{\circ}4$ avec les points B,R,B_1 et C_1 qui sont les homologues des points A,V,A_1 et B_1 avec la droite [BR] perpendiculaire à la bissectrice [CI] de l'angle en C.

Conclusion: R est sur la droite [B₁C₁]

Lemme n°7 : La bissectrice de l'angle en B coupe le cercle de diamètre BC en un deuxième point S qui est situé sur la droite joignant les points de contact B_1 et C_1 du cercle inscrit avec les côtés AB et AC.

On a $\angle BSC = \angle BRC = 90^{\circ}$. Les cinq points B,A_1,I,R et C_1 sont sur le même cercle de diamètre BI de même que les cinq points C,A_1,I,B_1 et S sur le cercle de diamètre BC.

Il en résulte que $\angle CRC_1 = 180^{\circ} - \angle ABI = 180^{\circ} - \angle ABS$ et $\angle CRB_1 = \angle CRS = \angle CBS$.

Comme $\angle ABS = \angle CBS$, on a $\angle CRC_1 + \angle CRB_1 = 180^\circ$.

Conclusion: S est sur la droite [B₁C₁]

3) les quatre points B,I,R et T sont sur un même cercle,

Lemme n°8: La droite A_1B_1 , la bissectrice [AI] de l'angle en A et la droite [A'C']oignant les milieux A' et C' des côtés BA et BCsont concourantes en un point T.

Ce lemme est la conséquence directe du lemme n°4 avec les points B,T,A₁ et B₁ qui sont les homologues des points A,V, A₁ et B₁ avec la droite [BT] perpendiculaire à la bissectrice de l'angle en A Il en résulte que les six points B,A₁,T,I,R et C sont sur le même cercle de diamètre BI.

4) les quatre points B,C,R et S sont sur un même cercle

Cette propriété découle du lemme n°7

5) les quatre points A,B,Vet T sont sur un même cercle.

Cette propriété découle du lemme n°8 avec la droite [BT] perpendiculaire à la bissectrice [AI] et par construction la droite [AV] perpendiculaire à la bissectrice [BI]