Propuesto por Philippe Fondanaiche

Problema 890.

Sea un triángulo ABC.

La circunferencia inscrita de centro I es tangente a los lados BC, CA y AB en los puntos A_1 , B_1 y C_1 .

La circunferencia exinscrita del ángulo A es tangente al lado BC en el punto A₂.

Los puntos A', B', C', son los puntos medios de los lados BC, CA y AB.

AH es la altura del vértice A.

Se definen los siguientes nueve puntos M, N, P, Q, R, S, T, U, V:

La recta A₂I corta a AH en el punto M.

La recta A'I corta a la recta AA₁ en el punto N.

La recta A_1 I corta a la mediana AA' en el punto P.

La perpendicular por I a la recta AA' corta en el punto Q a la paralela a BC por A.

La bisectriz del ángulo C del triángulo ABC corta a la recta A'C' en el punto R.

La bisectriz del ángulo B corta la circunferencia de diámetro BC en un segundo punto S.

La recta A_1B_1 corta a la recta A'C' en el punto T.

El punto U es el punto medio de la mediana AA'.

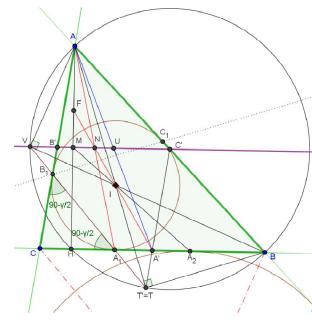
El punto V es la proyección del vértice A sobre la bisectriz del ángulo B.

Demostrar que:

- 1. Los puntos M, N, U y V están alineados.
- 2. Los puntos P, Q, R y S están alineados.
- 3. Los puntos B, I, R y T son concíclicos.
- 4. Los puntos B, C, R y S son concíclicos.
- 5. Los puntos A, B, V, T son concíclicos.

Fondanaiche, P. (2018): Comunicación personal.

Solución de Saturnino Campo Ruiz, Profesor de Matemáticas jubilado, de Salamanca.



1 y 5.- M, N, U y V están sobre la paralela media A'B'. A, B, V y T son concíclicos.

a) De la semejanza de los triángulos MHA_2 y IA_1A_2 se tiene $\frac{MH}{r}=\frac{HA_2}{A_1A_2}$; $A_1A_2=c-b$ y $HHA_2=(s-b)-b\cos\gamma$.

$$\frac{MH}{r} = \frac{(s-b) - b\cos\gamma}{c-b} = \frac{s - b(1 + \cos\gamma)}{c-b}$$
$$= \frac{s - b \cdot \frac{2s(s-c)}{ba}}{c-b} = \frac{s}{a}$$

Con esto, tomando $rs = [ABC] = \frac{1}{2}ab \operatorname{sen} \gamma$, tenemos ahora $MH = \frac{rs}{a} = \frac{AH}{2}$, que demuestra que el punto M está en la paralela media B'C'.

b) A'I corta a la recta AA_1 en el punto N. Y queremos ver que N también está en esa recta. Esto fue demostrado en el problema 820 de la segunda quincena de abril de 2017. Puede demostrarse también como sigue: si prolongamos A'I hasta cortar a la altura AH en F tenemos dos triángulos

semejantes AFN y A_1IN . Bastará demostrar ahora que AF = r.

De la semejanza de los triángulos $\Delta FHA'$ y $\Delta IA_1A'$ tenemos

$$\frac{FH}{r} = \frac{HA'}{A_1A'} = \frac{\frac{a}{2} - b \cdot \cos\gamma}{\frac{c - b}{2}} = \frac{a(a - 2b \cdot \cos\gamma)}{a(c - b)} = \frac{c^2 - b^2}{a(c - b)} = \frac{c + b}{a}$$
$$AF = AH - FH = \frac{2rs}{a} - \frac{r(c + b)}{a} = r.$$

c) y d) Es evidente que U está sobre B'C'.

Por construcción V está en la circunferencia de centro C y radio $\frac{c}{2}$. A partir de ahí el triángulo VC'B es isósceles y el ángulo en C es $180-\beta$ con lo cual se concluye que V también está en esa recta. Además en el problema 828 de la primera quincena de mayo de 2017 demostramos que V está alineado con B_1A_1 . Pero se puede demostrar ahora también.

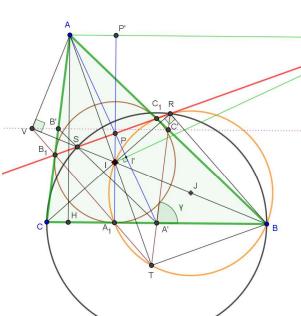
Sea T' la proyección ortogonal de B sobre la bisectriz de A, según lo anterior, T' está sobre la recta A'C'. El triángulo $\Delta VC'T'$ es isósceles y los ángulos iguales son de amplitud $90-\frac{\gamma}{2}$ y con ello también es isósceles el $\Delta VB'B_1$, ya que $\not \Delta VB'B_1=\gamma$ y por tanto el punto V está alineado con B_1 y A_1 . E igualmente T' también está alineado con B_1 y A_1 .

O sea, T' = T y con esto tenemos el punto 5.

- **3.-** Es evidente, según hemos visto, que CR y BR son perpendiculares, por tanto el punto medio J de BI es el centro de la circunferencia que pasa por B, I, R. La proyección de B sobre la bisectriz de A es T, por ello, también T está en esta circunferencia.
- **4.-** $\Delta CA'R$ es isósceles, pues el ángulo en A' es el suplemento de γ , y en C es $\frac{\gamma}{2}$. Por tanto R está en la circ. de centro A' y radio $\frac{a}{2}$.

S está, por construcción, sobre esa circunferencia, por tanto, A'S = A'B, y el ángulo $\sphericalangle SA'B$ del triángulo isósceles $\Delta SA'B$

es igual al suplementario de β . Entonces A'S es paralelo a AB y por tanto S está sobre el segmento B'A'.



2.- Los puntos P, Q, R y S están alineados.

Igual que V y T están sobre B_1A_1 , los puntos R y S están sobre B_1C_1 .

Resta demostrar que P y Q están en la recta B_1C_1 .

a) La polar de P respecto de la circunferencia inscrita ω es la recta paralela a BC por A. En efecto: la polar de P es una recta per-

pendicular al diámetro PI que pasa por el inverso, P' de P, respecto de ω .

Tomamos P' en la intersección del diámetro PI con la paralela a BC por A. P' es el inverso de P si se verifica que $PI \cdot P'I = r^2$. De la semejanza de los triángulos rectángulos AHA' y PA_1A' se tiene

$$PI = PA_1 - r = AH \cdot \frac{A_1A'}{HA'} - r; \ \frac{A_1A'}{HA} = \frac{a}{c+b'} \text{ calculado antes y } PA_1 = AH \cdot \frac{A_1A'}{HA'} = \frac{2rs}{a} \cdot \frac{a}{c+b} = \frac{2rs}{c+b'}$$

$$PI = PA_1 - r = \frac{2rs}{c+b} - r = \frac{ar}{c+b}. \ P'I = \frac{2rs}{a} - r = \frac{(c+b)r}{a}.$$

Por tanto
$$PI \cdot P'I = \frac{ar}{c+b} \cdot \frac{(c+b)r}{a} = r^2$$
.

La polar de P pasa por A, luego la polar de A pasa por P: son conjugados respecto de ω . Por ello la polar de A, recta B_1C_1 , pasa por P como pretendíamos demostrar.

b) Q es el polo de la mediana AA'.

El polo de la mediana AA' se encuentra en el diámetro de ω perpendicular a la misma y también sobre la polar de uno de sus puntos, por ejemplo P: la paralela por A a BC. Así es como hemos definido Q. Pero también está en la polar de A recta B_1C_1 .